HEAT SOURCE UNITS

1.	SPECIFICATIONS	2 - 1016
2.	EXTERNAL DIMENSIONS	2 - 1028
3.	CENTER OF GRAVITY	2 - 1031
4.	ELECTRICAL WIRING DIAGRAMS	2 - 1032
5.	SOUND LEVELS	2 - 1033
6.	CAPACITY TABLES	2 - 1036 2 - 1062 2 - 1069
7.	SYSTEM DESIGN GUIDE 7-1. Designing of water circuit system 7-2. Water piping work	2 - 1073
8.	OPTIONAL PARTS	2 - 1089 2 - 1090

1. SPECIFICATIONS

Indoor Model			PQHY-P72			96ZKMU-A	
Deuver eeusse			Non-Ducted	Ducted	Non-Ducted	Ducted	
Power source		671.4	3-phase 3-wire 57			575 V ±10% 60 Hz	
Cooling capacity	*1		72,0			,000	
(Nominal)	-	kW	21			8.1	
	Power input	kW	3.7			.93	
	Current input	А	4.			6.6	
(Rated)		BTU/h	69,0			,000	
		kW	20	2	2	7.0	
	Power input	kW	2.96	3.49	4.26	5.52	
(575)	Current input	А	3.3	3.8	4.7	6.1	
Temp. range of	Indoor	W.B.	59~75°F (15~24°C)	59~75°F	(15~24°C)	
cooling	Circulating water	°F	50~113°F ((10~45°C)	
Heating capacity	*2	BTU/h	80,0	,		3.000	
(Nominal)	2	kW	23			1.7	
(Normal)	Power input	kW	3.9			.17	
(575)							
· · · · · · · · · · · · · · · · · · ·	Current input	A	4.3			5.8	
(Rated)		BTU/h	76,0			3,000	
		kW	22			0.2	
	Power input	kW	3.48	3.66	4.87	5.74	
(575)	Current input	Α	3.8	4.0	5.4	6.4	
Temp. range of	Indoor	D.B.	59~81°F (15~27°C)	59~81°F	(15~27°C)	
neating	Circulating water	°F	50~95°F ((10~35°C)	
Indoor unit	Total capacity	i	50~130% of heatso			source unit capacity	
connectable	Model/Quantity		P06~P9			96/1~20	
		dD <as< td=""><td></td><td></td><td></td><td></td></as<>					
Sound pressure level (me		dB <a>	46			8.0	
Refrigerant	Liquid pipe	in. (mm)	3/8 (9.52)		3/8 (9.52) Brazed (1/2 (12.7)		
piping diameter	Gas pipe	in. (mm)	3/4 (19.05	/	1	2) Brazed	
Minimum Circuit Ampacity		А	9			12	
Maximum Overcurrent Pro	otection	А	15	5		20	
Circulating water	Water flow rate	G/h	1,5:	22	1,	522	
-		G/min (gpm)	25	4	2	5.4	
		m ³ /h	5.7			.76	
		L/min	96			96	
	-	cfm	3.4			3.4	
	Pressure drop	psi	3.4		3.48		
		kPa	24			24	
	Operating volume range	G/h	1,189 ~	1,189 ~ 1,902		1,189 ~ 1,902	
		G/min (gpm)	19.8 ~	31.7	19.8	~ 31.7	
	m ³ /h		4.5 ~	7.2	4.5 ~ 7.2		
Compressor	Type x Quantity		Inverter scroll hermetic compressor x 1		Inverter scroll hermetic compressor x 1		
e empreseei	Manufacture		AC&R Works, MITSUBISHI E		AC&R Works, MITSUBISHI		
	Starting method		Inve				
	Motor output kW				Inverter 6.0		
	Case heater		4.				
		kW	-			-	
				.32			
	Lubricant		MEL			EL32	
External finish			MEL Galvanized s			EL32 I steel sheets	
	Lubricant	in.		steel sheets	Galvanized		
	Lubricant	in. mm	Galvanized s	teel sheets /16 x 21-11/16	Galvanized 43-5/16 x 34-1	I steel sheets	
External dimension H x W	Lubricant x D	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8	steel sheets /16 x 21-11/16 80 x 550	Galvanized 43-5/16 x 34-1 1,100 x	l steel sheets 1/16 x 21-11/16 880 x 550	
External dimension H x W	Lubricant	mm	Galvanized s 43-5/16 x 34-11	steel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr	l steel sheets 1/16 x 21-11/16 880 x 550	
External dimension H x W	Lubricant x D	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pres	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i)	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr p	l steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6	
External dimension H x W	Lubricant x D High pressure protection	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) wer-current protection	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr p Over-heat protection,	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (f psi)	
External dimension H x W Protection devices	Lubricant x D High pressure protection Inverter circuit Compressor	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 j) ver-current protection protection	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr p Over-heat protection, Over-heat	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (t isi) Over-current protection t protection	
External dimension H x W Protection devices	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat R410A x 11 lbs	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) //////////////////////////////////	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr p Over-heat protection, Over-heat R410A x 11 lbs	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (f over-current protection t protection s + 1 oz (5.0 kg)	
External dimension H x W Protection devices Refrigerant	Lubricant x D High pressure protection Inverter circuit Compressor	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat R410A x 11 lbs LEV and H	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) //ver-current protection protection + 1 oz (5.0 kg) IIC circuit	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr p Over-heat protection, Over-heat R410A x 11 lbs LEV and	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 Over-current protection 0 ver-current protection t protection s + 1 oz (5.0 kg) HIC circuit	
External dimension H x W Protection devices Refrigerant Net weight	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) // current protection protection + 1 oz (5.0 kg) IIC circuit 185)	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Dover-heat protection, Over-heat R410A x 11 lbs LEV and 408	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185)	
External dimension H x W Protection devices Refrigerant Net weight	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control	mm Ibs (kg)	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) iver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr p Over-heat protection, Over-hea R410A x 11 lbs LEV and 408 plate	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type	
External dimension H x W Protection devices Refrigerant Net weight	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge	mm	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and F 408 (plate 1.3	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) wer-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type -2	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr p Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32	
External dimension H x W Protection devices Refrigerant Net weight	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate	mm Ibs (kg) G I	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) /// wer-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 1	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type 32 5.0	
External dimension H x W Protection devices Refrigerant Net weight	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- by Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5,1 29	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) iver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat protection, Over-heat LeV and LEV and 408 plate 1 5 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (f si) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 290	
External dimension H x W Protection devices Refrigerant Net weight	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate	mm Ibs (kg) G I	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) iver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat protection, Over-heat LeV and LEV and 408 plate 1 5 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (for isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type 32 5.0	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max.	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- by Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5,1 29	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) /ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 1 5 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 290	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max.	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5. 29	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) iver-current protection protection + 1 oz (5.0 kg) IIC circuit I85) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 1 2 2 2 2 2 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection it protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 .90 2.0	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) wer-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type -2 -0 -0 	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 190 2.0 re-in-tube structure	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.1 29 2.2 Copper pipe, tube	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) wer-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type -2 -0 -0 	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 290 2.0 e-in-tube structure 4C549	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.4 29 29 2.0 Copper pipe, tube KJ940	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat protection, Aver-heat protection, Over-heat protection, LEV and 408 plate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (i isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 .0 290 2.0 .0 e-in-tube structure 4C549 4C823 -	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pres Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.1 299 29 29 29 20 20 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) /ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 2 2 Copper pipe, tub KJ94 KE94 Details refer f	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 .90 2.0 e-in-tube structure 4C549 4C823 - to External Drw	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.1 29 29 29 2.2 Copper pipe, tube KJ944 KE944 Copper pipe, tube	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (f isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 .90 2.0 we-in-tube structure 4C549 4C823 - - to External Drw G2, CMY-Y102LS-G2	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment Dptional parts	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C S S S S S S S S S S S S S S S S S S S	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601 i) iver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x High pressure sensor, High pr Over-heat protection, Over-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 2.0 e-e-in-tube structure 4C549 4C823 - to External Drw G2, CMY-Y102LS-G2 104/108/1010C-G	
External finish External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment Optional parts Remarks	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.1 29 29 29 29 20 Copper pipe, tube KJ944 KE944 KE944 Copper pipe, tube KJ944 KE944 Copper pipe, tube Copper pipe, tu	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Dover-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 0 Copper pipe, tub KJ94 KE9 Details refer t joint: CMY-Y102SS- Header: CMY-Y al wiring, power source switch, a subject to change without notic k ket below 104°FD. B. (40°CD o be kept below 80%. er inlet piping of the unit. r circuit. ket.	I steel sheets 1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (6 si) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 190 2.0 e-in-tube structure 4C549 4C823 - to External Drw G2, CMY-Y102LS-G2 104/108/1010C-G and other items shall be refer Se. .B.)	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment Optional parts	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.1 299 2.2 Copper pipe, tube KJ940 KE940 Copper pipe, tube Gopper pipe, tube Copper pipe,	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Dover-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 0 Copper pipe, tub KJ94 KE9 Details refer t joint: CMY-Y102SS- Header: CMY-Y al wiring, power source switch, a subject to change without notic k ket below 104°FD. B. (40°CD o be kept below 80%. er inlet piping of the unit. r circuit. ket.	I steel sheets 1/1/6 x 21-11/16 880 x 550 essure switch at 4.15 MPa (i si) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type 32 5.0 190 2.0 te-in-tube structure 4C549 4C823 - to External Drw G2, CMY-Y102LS-G2 104/108/1010C-G and other items shall be refer Se. .B.)	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment Optional parts Remarks	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document	mm Ibs (kg) G I psi	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Over-heat R410A x 11 lbs LEV and H 408 (plate 1.3 5.1 29 29 29 29 20 Copper pipe, tube KJ944 KE944 KE944 Copper pipe, tube KJ944 KE944 Copper pipe, tube Copper pipe, tu	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Dover-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 0 Copper pipe, tub KJ94 KE9 Details refer t joint: CMY-Y102SS- Header: CMY-Y al wiring, power source switch, a subject to change without notic k ket below 104°FD. B. (40°CD o be kept below 80%. er inlet piping of the unit. r circuit. ket.	I steel sheets 1/1/6 x 21-11/16 880 x 550 essure switch at 4.15 MPa (isi) Over-current protection It protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 .90 2.0 e-in-tube structure 4C549 4C823 - to External Drw G2, CMY-Y102LS-G2 104/108/1010C-G and other items shall be refer ce. b.B.)	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment Optional parts Remarks Notes:	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document Accessory	mm Ibs (kg) G I psi MPa	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat Protection, C Power-heat Protection, Power-heat Protection, Power-	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Dover-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 0 Copper pipe, tub KJ94 KE9 Details refer t joint: CMY-Y102SS- Header: CMY-Y al wiring, power source switch, a subject to change without notic k ket below 104°FD. B. (40°CD o be kept below 80%. er inlet piping of the unit. r circuit. ket.	I steel sheets 1/1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (si) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 .90 2.0 e-in-tube structure 4C549 4C823 - to External Drw G2, CMY-Y102LS-G2 104/108/1010C-G and other items shall be refer xe. .B.) lation manual. Unit converter	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment Optional parts Remarks Notes: 1.Nominal cooling conditio	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document Accessory ons (Test conditions are ba	mm Ibs (kg) G I psi MPa MPa	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protect	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Dover-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 0 Copper pipe, tub KJ94 KE9 Details refer t joint: CMY-Y102SS- Header: CMY-Y al wiring, power source switch, a subject to change without notic k ket below 104°FD. B. (40°CD o be kept below 80%. er inlet piping of the unit. r circuit. ket.	I steel sheets 1/1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type 2.0 re-in-tube structure 4C549 4C823 to External Drw G2, CMY-Y102LS-G2 104/108/1010C-G and other items shall be refer Se.).B.) ation manual. Unit converter BTU/h =kW x 3,412	
External dimension H x W Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Inte Drawing Standard attachment Optional parts Remarks I.Nominal cooling conditio Indoor: 81°FD.B./66°FW	Lubricant x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. r-Changer) External Wiring Document Accessory	mm Ibs (kg) G I psi MPa MPa ssed on AHRI Water temper	Galvanized s 43-5/16 x 34-11 1,100 x 8 High pressure sensor, High pre- ps Over-heat protection, C Over-heat protection, C Network, 11 10 20 20 20 20 20 20 20 20 20 2	teel sheets /16 x 21-11/16 30 x 550 ssure switch at 4.15 MPa (601)) ver-current protection protection + 1 oz (5.0 kg) IIC circuit 185) type 2 0 0 0 	Galvanized 43-5/16 x 34-1 1,100 x. High pressure sensor, High pr Dover-heat protection, Over-heat R410A x 11 lbs LEV and 408 plate 0 Copper pipe, tub KJ94 KE9 Details refer t joint: CMY-Y102SS- Header: CMY-Y al wiring, power source switch, a subject to change without notic k ket below 104°FD. B. (40°CD o be kept below 80%. er inlet piping of the unit. r circuit. ket.	I steel sheets 1/1/16 x 21-11/16 880 x 550 essure switch at 4.15 MPa (isi) Over-current protection t protection s + 1 oz (5.0 kg) HIC circuit (185) e type .32 5.0 .90 2.0 e-in-tube structure 4C549 4C823 - to External Drw G2, CMY-Y102LS-G2 104/108/1010C-G and other items shall be refer xe. .B.) lation manual. Unit converter	

*Above specification data is subject to rounding variation.

WY 575V

lleat 0	• Medal			5010/			1
Heat Source				PQHY-P12 Non-Ducted	Ducted		
Power source				Non-Ducted 3-phase 3-wire 57			
Cooling capa		*1	BTU/h	· · · · · · · · · · · · · · · · · · ·	000		
(Nominal)	aony		kW	35			
		Power input	kW	7.9			
	(575)	Current input	Α	8.	8		
	(Rated)		BTU/h	114,	000		
			kW	33			
		Power input	kW	6.72	7.35		
-	,	Current input	A	7.4	8.2		
Temp. range	e of	Indoor Circulating water	₩.B. °F	59~75°F (50~113°F			
cooling Heating cap	acity	Circulating water *2		50~113 F 135,			
(Nominal)	acity	2	kW	39			
(i torninar)		Power input	kW	7.9			
	(575)	Current input	Α	8.			
	(Rated)	•	BTU/h	129,	000		
			kW	37	.8		
		Power input	kW	7.43	7.44		
-		Current input	A	8.2	8.3		
Temp. range	e of	Indoor	D.B.	59~81°F (
heating Indoor unit		Circulating water Total capacity	°F	50~95°F (50~130% of heats	,		
connectable		Model/Quantity		50~130% of heats P06~P9			
		asured in anechoic room)	dB <a>	54			
Refrigerant		Liquid pipe	in. (mm)	3/8 (9.52) Brazed (1/2 (12.7)			
piping diame	eter	Gas pipe	in. (mm)	7/8 (22.2			
Minimum Cir	rcuit Ampacity		A	1	3		
	vercurrent Pro		А	2			
Circulating w	ater	Water flow rate	G/h	1,5			
			G/min (gpm)	25			
			m ³ /h	5.			
			L/min cfm	9			
		Pressure drop	psi	3.			
		Flessure drop	kPa	2			
		Operating volume range	G/h	1,189 ~			
		- p	G/min (gpm)	19.8 ~			
			m ³ /h	4.5 ~	- 7.2		
Compressor	r	Type x Quantity		Inverter scroll herme			
		Manufacture		AC&R Works, MITSUBISHI			
		Starting method		Inve			
		Motor output	kW	7.			
		Case heater Lubricant	kW	 MEI			
External finis	eh	Lubricant		Galvanized			
	nension H x W	хD	in.	43-5/16 x 34-11			
			mm	1,100 x 8			
Protection de	evices	High pressure protection		High pressure sensor, High pre			
		Inverter circuit		psi) Over-heat protection, Over-current protection			
5.0		Compressor		Over-heat	•		
Refrigerant		Type x original charge		R410A x 11 lbs			
Net weight		Control	lbs (kg)	LEV and H 408 (
Heat exchar	naer		103 (i(g)	plate			
. iout oxonar		Water volume in plate	G	1.3	21		
			1	5.			
		Water pressure Max.	psi	29			
			MPa	2.			
,	HIC: Heat Inte	0,		Copper pipe, tube			
Drawing		External		KJ94			
Stondard -	toohmont	Wiring Document		KE94			
Standard att	lachment	Accessory		- Details refer to			
Optional par	ts	A0063301 y		joint: CMY-Y102SS-G2, CMY-			
	13			Header: CMY-Y1			
Remarks				to the Installation Manual. Due to continuing improvemen The ambient temperature of the The ambient relative humidity of The Heat Source Unit should in Be sure to mount a strainer (m Be sure to provide interlocking Install the supplied insulation n	t, above specifications may be e Heat Source Unit needs to be of the Heat Source Unit needs t	subject to change without noti kept below 104°FD.B. (40°Cl o be kept below 80%. er inlet piping of the unit. r circuit. ket.	D.B.)
				when installing insulation mate	enal around both water and refr	gerant piping, follow the insta	
Notes:							Unit converter

			PQHY-P14	4ZSKMU-A	
Indoor Model			Non-Ducted	Ducted	
Power source			3-phase 3-wire 5	75 V ±10% 60 Hz	
Cooling capacity	*1	BTU/h	144,		
(Nominal)		kW	42		
· · ·	Power input	kW	9.	21	
(575)	Current input	A		.2	
(Rated)		BTU/h	137	.000	
(1000)		kW		.2	
	Power input	kW	6.47	8.57	
(575)		A	7.2	9.5	
Temp. range of	Indoor	W.B.	59~75°F (
cooling	Circulating water	°F	50~113°F		
Heating capacity	*2				
0 1 3	2	kW	46		
(Nominal)	Deventionent				
()	Power input	kW	8.		
	Current input	A	9		
(Rated)		BTU/h		.000	
		kW		.5	
()	Power input	kW	7.51	8.17	
	Current input	A	8.3	9.1	
Temp. range of	Indoor	D.B.	59~81°F (
neating	Circulating water	°F	50~95°F (,	
ndoor unit	Total capacity		50~130% of heat s		
connectable	Model/Quantity		P06~P9		
Sound pressure level (mea		dB <a>	49		
Refrigerant	Liquid pipe	in. (mm)	1/2 (12.7		
piping diameter	Gas pipe	in. (mm)	1-1/8 (28.5	58) Brazed	
Set Model					
Model			PQHY-P72ZKMU-A	PQHY-P72ZKMU-A	
Vinimum Circuit Ampacity		А	9	9	
Maximum Overcurrent Pro		A	15	15	
Circulating water	Water flow rate	G/h	1,522 -	+ 1,522	
-		G/min (gpm)	25.4 -	+ 25.4	
		m ³ /h	5.76 -		
		L/min	96 -		
		cfm	3.4 -		
	Pressure drop	psi	3.48	3.48	
		kPa	24	24	
	Operating volume range	G/h	24 1,189 + 1,189 -		
	operating volume range			~ 1,902 + 1,902 ~ 31.7 + 31.7	
		G/min (gpm)			
Comproses	Tuno y Ouentity	m ³ /h	4.5 + 4.5 -		
Compressor	Type x Quantity		Inverter scroll hermetic compressor x 1	Inverter scroll hermetic compressor x 1	
	Manufacture		AC&R Works, MITSUBISHI ELECTRIC CORPORATION	AC&R Works, MITSUBISHI ELECTRIC CORPORATION	
	Starting method	1.141	Inverter	Inverter	
	Motor output	kW	4.3	4.3	
	Case heater	kW	-	-	
	Lubricant		MEL32	MEL32	
External finish		1.	Galvanized steel sheets	Galvanized steel sheets	
External dimension H x W	хD	in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16	
	1	mm	1,100 x 880 x 550	1,100 x 880 x 550	
Protection devices	High pressure protectio	n	High pressure sensor, High pressure switch at 4.15 MPa (601		
			psi)	psi)	
	Inverter circuit		Over-heat protection, Over-current protection	Over-heat protection, Over-current protection	
	Compressor		Over-heat protection	Over-heat protection	
Refrigerant	Type x original charge		R410A x 11 lbs + 1 oz (5.0 kg)	R410A x 11 lbs + 1 oz (5.0 kg)	
	Control		LEV and I		
Net weight		lbs (kg)	408 (185)	408 (185)	
Heat exchanger					
i cat excitatiget	1		plate type	plate type	
near exchanger	Water volume in plate	G	1.32	1.32	
icat exchanger		1	1.32 5.0	1.32 5.0	
	Water volume in plate Water pressure Max.	l psi	1.32	1.32	
		1	1.32 5.0	1.32 5.0	
HIC circuit (HIC: Heat Inte	Water pressure Max.	l psi	1.32 5.0 290	1.32 5.0 290	
- HIC circuit (HIC: Heat Inte	Water pressure Max.	l psi	1.32 5.0 290 2.0	1.32 5.0 290 2.0	
HIC circuit (HIC: Heat Inte Pipe between unit and	Water pressure Max. er-Changer)	l psi MPa	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor	Water pressure Max. er-Changer) Liquid pipe	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor	Water pressure Max. er-Changer) Liquid pipe Gas pipe	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing	Water pressure Max. er-Changer) Liquid pipe Gas pipe External	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KJ94	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing	Water pressure Max. er-Changer) Liquid pipe Gas pipe External Wiring	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KJ94	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment	Water pressure Max. rr-Changer) Liquid pipe Gas pipe External Wiring Document	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KE94C823 Details refer to	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823 b External Drw	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment	Water pressure Max. rr-Changer) Liquid pipe Gas pipe External Wiring Document	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (19.05) Brazed G487 KE94C823 Dexternal Drw gkit: CMY-Y100CBK3	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts	Water pressure Max. rr-Changer) Liquid pipe Gas pipe External Wiring Document	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KJ94 KE94C823 CDetails refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY Header: CMY-Y1	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823 	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts	Water pressure Max. rr-Changer) Liquid pipe Gas pipe External Wiring Document	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KI94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to the the Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823 0 External Drw 0 External Drw 0 kit: CMY-Y100CBK3 Y102LS-G2, CMY-Y202S-G2 04/108/1010C-G Il wiring, power source switch, and other items shall be referred subject to change without notice. kept below 104°FD.B. (40°CD.B.) b be kept below 80%. er inlet piping of the unit. circuit.	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts	Water pressure Max. rr-Changer) Liquid pipe Gas pipe External Wiring Document	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be so The ambient tentperature of the Heat Source Unit needs to be the ambient relative humidity of the Heat Source Unit needs to the Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water Be sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-soci	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823 •	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts	Water pressure Max. rr-Changer) Liquid pipe Gas pipe External Wiring Document	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KI94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to be the ambient temperature of the Heat Source Unit needs to the the Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823 •	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks	Water pressure Max. rr-Changer) Liquid pipe Gas pipe External Wiring Document	I psi MPa in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be so The ambient tentperature of the Heat Source Unit needs to be the ambient relative humidity of the Heat Source Unit needs to the Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water Be sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-soci	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823 •	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks	Water pressure Max. er-Changer) Liquid pipe Gas pipe External Wiring Document Accessory	I psi MPa in. (mm) in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KE94C823 Details refer to Details refer to Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation work, electrica Details on foundation work, duct work, insulation may be s The ambient relative humidity of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to the The ambient relative humidity of the Heat Source Unit needs to be <td colspan<="" td=""><td>1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (9.52) Brazed G487 KE94C823 • <</td></td>	<td>1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (9.52) Brazed G487 KE94C823 • <</td>	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (9.52) Brazed G487 KE94C823 • <
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks	Water pressure Max. er-Changer) Liquid pipe Gas pipe External Wiring Document Accessory	I psi MPa in. (mm) in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KI94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY- Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to be the sure to mount a strainer (more than 50 meshes) at the wate Be sure to mount a strainer (more than 50 meshes) at the wate Install the supplied insulation material to the unused drain-sock When installing insulation material around both water and refri- tional structure installing insulation material around both water and refri- tional structure installing insulation material around both water and refri- tional structure installing insulation material around both water and refri- tional structure installing insulation material around both water and refri- tional structure installing insulation material around both water and refri- tional structure installing insulation material around both water and refri- tional structure installing insulation material around both water and refri- ture	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed G487 KE94C823 O External Drw g kit: CMY-Y100CBK3 Y102LS-G2, CMY-Y202S-G2 04/108/1010C-G I wring, power source switch, and other items shall be referred subject to change without notice. kept below 104°FD.B. (40°CD.B.) b be kept below 80%. er inlet piping of the unit. circuit. vet. gerant piping, follow the installation manual. Unit converter BTU/h =kW x 3,412	
HIC circuit (HIC: Heat Inte Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks	Water pressure Max. er-Changer) Liquid pipe Gas pipe External Wiring Document Accessory ns (Test conditions are b .B. (27°CD.B./19°CW.B.	I psi MPa in. (mm) in. (mm) in. (mm)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/4 (19.05) Brazed KI94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The supplied insulation material to the unused drain-soci When installing insulation material to the unused drain-soci When installing insulation material around both water and refri- 11230) erature: 86°F (30°C)	1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 3/8 (9.52) Brazed G487 KE94C823 • <	

*Above specification data is subject to rounding variation.

Heat Source Model Indoor Model			PQHY-P16 Non-Ducted	Ducted
Power source			3-phase 3-wire 5	
Cooling capacity	*1	BTU/h	3-phase 3-wile 3.	
(Nominal)		kW	49	
(Power input	kW	10.	
(575)	Current input	A	11	.9
(Rated)		BTU/h	161,	000
		kW	47	.2
	Power input	kW	8.48	9.93
	Current input	А	9.4	11.0
Temp. range of	Indoor	W.B.	59~75°F (
cooling	Circulating water	°F	50~113°F	
Heating capacity	*2	BTU/h	188,	
(Nominal)	D	kW	55	
(575)	Power input	kW	10.	
(575)	Current input	A		
(Rated)		BTU/h kW	52	
	Power input	kW	9.44	9.99
(575)	Current input	A	10.5	11.1
Temp. range of	Indoor	D.B.	59~81°F (
neating	Circulating water	°F	50~95°F (
ndoor unit	Total capacity		50~130% of heat s	,
connectable	Model/Quantity		P06~P9	
Sound pressure level (mea	,	dB <a>	50	
Refrigerant	Liquid pipe	in. (mm)	5/8 (15.88	3) Brazed
piping diameter	Gas pipe	in. (mm)	1-1/8 (28.5	
Set Model				
Model			PQHY-P96ZKMU-A	PQHY-P72ZKMU-A
Minimum Circuit Ampacity		А	12	9
Maximum Overcurrent Pro		A	20	15
Circulating water	Water flow rate	G/h	1,522 +	
		G/min (gpm)	25.4 +	
		m ³ /h	5.76 +	
		L/min	96 -	
	Des serves des s	cfm	3.4 +	
	Pressure drop	psi kPa	3.48 24	3.48 24
	Operating volume range	G/h	24 1,189 + 1,189 ~	
	Operating volume range	G/min (gpm)	19.8 + 19.8 -	
		m ³ /h	4.5 + 4.5 -	
Compressor	Type x Quantity		Inverter scroll hermetic compressor x 1	Inverter scroll hermetic compressor x 1
	Manufacture		AC&R Works, MITSUBISHI ELECTRIC CORPORATION	AC&R Works, MITSUBISHI ELECTRIC CORPORATION
	Starting method		Inverter	Inverter
	Motor output kW		6.0	4.3
	Case heater	kW	-	
	Lubricant		MEL32	MEL32
External finish			Galvanized steel sheets	Galvanized steel sheets
External dimension H x W	хD	in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16
		mm	1,100 x 880 x 550	1,100 x 880 x 550
Protection devices	High pressure protection	l	High pressure sensor, High pressure switch at 4.15 MPa (601	
	Inverter circuit		psi) Over-heat protection, Over-current protection	psi) Over-heat protection, Over-current protection
	Compressor		Over-heat protection	Over-heat protection
Refrigerant	Type x original charge		R410A x 11 lbs + 1 oz (5.0 kg)	R410A x 11 lbs + 1 oz (5.0 kg)
3	Control		LEV and H	(8)
Net weight		lbs (kg)	408 (185)	408 (185)
Heat exchanger		,	plate type	plate type
-	Water volume in plate	G	1.32	1.32
			5.0	5.0
	Water pressure Max.	psi	290	290
		MPa	2.0	2.0
HIC circuit (HIC: Heat Inte	2 /		Copper pipe, tube-in-tube structure	Copper pipe, tube-in-tube structure
Pipe between unit and	Liquid pipe	in. (mm)	3/8 (9.52) Brazed	3/8 (9.52) Brazed
distributor	Gas pipe	in. (mm)	7/8 (22.2) Brazed	7/8 (22.2) Brazed
Drawing	External		KJ94	
0	Wiring		KE94C823	KE94C823
Standard attachment	Document		-	- Eutomal Day
	Accessory			External Drw
Optional narta			Heat Source Twinning joint: CMY-Y102SS-G2, CMY-	
Optional parts			Joint: CM1+1102SS-G2, CM1+ Header: CMY-Y1	
Optional parts			i icauci. GWIT-TI	
Optional parts				
· ·			Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-soot When installion insulation material around both water and refri	which is a change without notice. kept below 104°FD.B. (40°CD.B.) be kept below 80%. er inlet piping of the unit. circuit. ket.
			to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water	ubject to change without notice. kept below 104°FD.B. (40°CD.B.) be kept below 80%. er inlet piping of the unit. circuit. ket.
Optional parts Remarks Votes:			to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-sock	which is a change without notice. kept below 104°FD.B. (40°CD.B.) be kept below 80%. er inlet piping of the unit. circuit. ket.
Remarks	ns (Test conditions are ba	ased on AHR	to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-sock When installing insulation material around both water and refrig	Hubject to change without notice. kept below 104°FD.B. (40°CD.B.) b be kept below 80%. er inlet piping of the unit. circuit. ket. gerant piping, follow the installation manual.
Remarks	.B. (27°CD.B./19°CW.B.),	Water temp	to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient tender the function of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-sock When installing insulation material around both water and refrig 11230) erature: 86°F (30°C)	tubject to change without notice. kept below 104°FD.B. (40°CD.B.) b be kept below 80%. er inlet piping of the unit. circuit. ket. gerant piping, follow the installation manual. Unit converter

MEE15K058

*Above specification data is subject to rounding variation.

Heat Source Medal				
Heat Source Model Indoor Model			PQHY-P19: Non-Ducted	2ZSKMU-A
Power source				Ducted 75 V ±10% 60 Hz
Cooling capacity	*1	BTU/h		,000
(Nominal)		kW		3.3
()	Power input	kW		.60
(575	5) Current input	A	14	l.0
(Rated)		BTU/h		,000
		kW		3.6
(Power input	kW	10.28	11.73
(575	5) Current input Indoor	A W.B.	11.4 59~75°F (13.0
Temp. range of cooling	Circulating water	°F	50~13°F	
Heating capacity	*2	BTU/h		.000
(Nominal)	-	kW		3.0
· · ·	Power input	kW	13.	.01
(575	5) Current input	A	14	l.5
(Rated)		BTU/h	205	,000
	-	kW).1
(575	Power input	kW	11.19	12.11
	5) Current input	A D.B.	12.4	13.5
Temp. range of	Indoor Circulating water	D.B. ⁰F	59~81°F (50~95°F (
neating Indoor unit	Circulating water Total capacity	-F	50~95 F (50~130% of heat s	
connectable	Model/Quantity			96/1~41
	easured in anechoic room)	dB <a>		1.0
Refrigerant	Liquid pipe	in. (mm)		8) Brazed
piping diameter	Gas pipe	in. (mm)		58) Brazed
Set Model			· · · · · · · · · · · · · · · · · · ·	,
Vodel			PQHY-P96ZKMU-A	PQHY-P96ZKMU-A
Minimum Circuit Ampaci		A	12	12
Maximum Overcurrent P		A Official	20	20
Circulating water	Water flow rate	G/h G/min (gpm)		+ 1,522 + 25.4
		m ³ /h	23.4 - 5.76 -	
		L/min	96 -	
		cfm	3.4 -	
	Pressure drop	psi	3.48	3.48
		kPa	24	24
	Operating volume range	G/h	1,189 + 1,189 -	~ 1,902 + 1,902
		G/min (gpm)	19.8 + 19.8 -	~ 31.7 + 31.7
		m ³ /h	4.5 + 4.5 ~	~ 7.2 + 7.2
Compressor	Type x Quantity		Inverter scroll hermetic compressor x 1	Inverter scroll hermetic compressor x 1
	Manufacture		AC&R Works, MITSUBISHI ELECTRIC CORPORATION	AC&R Works, MITSUBISHI ELECTRIC CORPORATION
	Starting method		Inverter	Inverter
	Motor output	kW	6.0	6.0
	Case heater	kW	-	-
			MEI 22	
External finish	Lubricant		MEL32 Galvanized steel sheets	MEL32 Galvanized steel sheets
	Lubricant	in.	Galvanized steel sheets	Galvanized steel sheets
	Lubricant	in. mm		
External finish External dimension H x ' Protection devices	Lubricant W x D	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550
	Lubricant W x D High pressure protection	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi)
External dimension H x	Lubricant W x D High pressure protection Inverter circuit	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection
External dimension H x	Lubricant W x D High pressure protection Inverter circuit Compressor	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection
External dimension H x	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)
External dimension H x ¹ Protection devices Refrigerant	Lubricant W x D High pressure protection Inverter circuit Compressor	mm n	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit
External dimension H x ¹ Protection devices Refrigerant Net weight	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)
External dimension H x ¹ Protection devices Refrigerant Net weight	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge	mm n	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185)
External dimension H x Protection devices Refrigerant Net weight	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate	mm n Ibs (kg)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection 0ver-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0
External dimension H x ¹ Protection devices Refrigerant Net weight	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control	mm n Ibs (kg) G I psi	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290
External dimension H x Protection devices Refrigerant <u>Vet weight</u> Heat exchanger	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max.	mm n Ibs (kg) G I	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. iter-Changer)	mm n Ibs (kg) G I psi MPa	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure
External dimension H x ¹ Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6(psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. Liquid pipe Gas pipe	mm n Ibs (kg) G I psi MPa	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water volume in plate Water pressure Max. iter-Changer) Liquid pipe Gas pipe External	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KJ94	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. Liquid pipe Gas pipe	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. iter-Changer) Liquid pipe Gas pipe External Wiring	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KJ94 KE94C823	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KJ94 KE94C823	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6/ psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed G487 KE94C823 De External Drw
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS-	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed G487 KE94C823 - b External Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2
External dimension H x 1 Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS-	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 KE94C823 D External Drw pkit: CMY-Y100CBK3
External dimension H x Protection devices Refrigerant Vet weight Heat exchanger HIC circuit (HIC: Heat In pipe between unit and distributor Drawing Standard attachment Dptional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KI94 KE94C823 Details refer tu Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x 1 Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Optional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KE94C823 LEV and I Meat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x 1 Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Optional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KI94 KE94C823 Details refer tu Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 CE94C823 De External Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referred
External dimension H x	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS. Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 E494C823 - D External Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referred subject to change without notice. kept below 104°FD.B. (40°CD.B.)
External dimension H x 1 Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Optional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed XJ94 KE94C823 LEV and I Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6) psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 E494C823 - D External Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referm subject to change without notice. kept below 104°FD.B. (40°CD.B.)
External dimension H x 1 Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Optional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 10000 LEV and I 408 (185) 10000 LEV and I 408 (185) 10000 LEV and I 1000 LEV and I 10000 LEV and I 1000	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) 11C circuit 408 (185) 11C circuit 408 (185) 11C circuit 408 (185) 11C circuit 408 (185) 120 280 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 KE94C823 CExternal Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referr subject to change without notice. kept below 104°FD.B. (40°CD.B.) b be kept below 80%.
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Dptional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed XJ94 KE94C823 LEV and I Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In po between unit and distributor Drawing Standard attachment Dptional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 1000000000000000000000000000000000000	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 KE94C823 5 5 External Drw g kit: CMY-Y100CBK3 -62, CMY-Y100CBK3 -62, CMY-Y202S-62, CMY-Y302S-62 04/108/1010C-G al wiring, power source switch, and other items shall be referr subject to change without notice. kept below 104"FD.B. (40°CD.B.) b be kept below 80%. er inlet piping of the unit. circuit.
External dimension H x Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In po between unit and distributor Drawing Standard attachment Dptional parts	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) 112 408 (185) 1290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 CKE94C823 CKE
External dimension H x Protection devices Refrigerant Vet weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Dptional parts Remarks	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 1000000000000000000000000000000000000	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 CE94C823 De External Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referr subject to change without notice. kept below 80%. er inlet piping of the unit. circuit. ket. gerant piping, follow the installation manual.
External dimension H x Protection devices Refrigerant Let weight Hat exchanger HIC circuit (HIC: Heat In Pipe between unit and tistributor Drawing Standard attachment Dptional parts Remarks	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory	mm n Ibs (kg) G I psi MPa in. (mm) in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 1408 (185) 1408 (185) 15.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be so The ambient relative humidity of the Heat Source Unit needs to be Serve to mount a strainer (more than 50 meshes) at the wate Install the supplied insulation material to the unused drain-socd When installing insulation material around both water and refri	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 CKE94C823 CKE94C
External dimension H x 1 Protection devices Refrigerant Het weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and listributor Drawing Standard attachment Dptional parts Remarks otes: Nominal cooling condit	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document	mm n Ibs (kg) G I psi MPa in. (mm) in. (mm) ased on AHR	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 1000 1000 1000 1000 1000 1000 1000 10	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x 1 Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks Remarks Indoor: 81°FD.B./66°FV .Nominal cooling condit Indoor: 81°FD.B./66°FV .Nominal heating condit	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory	mm n Ibs (kg) G I psi MPa in. (mm) in. (mm) in. (mm) ased on AHR , Water tempp ased on AHR	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KL94C823 Let Multiple Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the unit operation and water In temperature of the unit operation and water Be sure to provide interlocking for the unit operation and water Install the supplied insulation material around both water and refri 11230) erature: 86°F (30°C)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 CE94C823
External dimension H x Protection devices Refrigerant Net weight HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks Iotes: .Nominal cooling condit Indoor: 81°FD.B./66°FL .Nominal heating condit	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water volume in plate Water pressure Max. Iter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory ions (Test conditions are b W.B. (27°CD.B./19°CW.B.)	mm n Ibs (kg) G I psi MPa in. (mm) in. (mm) in. (mm) ased on AHR , Water tempp ased on AHR	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KL94C823 Let Multiple Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the unit operation and water In temperature of the unit operation and water Be sure to provide interlocking for the unit operation and water Install the supplied insulation material around both water and refri 11230) erature: 86°F (30°C)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6) psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) 10 circuit 408 (185) 11 circuit 408 (185) 12 circuit 408 (185) 13 circuit 408 (185) 13 circuit 408 (185) 14 circuit 408 (185) 15 circuit 408 (185) 16 circuit 408 (185) 17 circuit 408 (185) 17 circuit 408 (185) 10 circuit 40 circui
External dimension H x Protection devices Refrigerant Net weight HIC circuit (HIC: Heat In Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks Iotes: .Nominal cooling condit Indoor: 81°FD.B./66°FL .Nominal heating condit	Lubricant W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water volume in plate Water pressure Max. tter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory	mm n Ibs (kg) G I psi MPa in. (mm) in. (mm) in. (mm) ased on AHR , Water tempp ased on AHR	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed KL94C823 Let Multiple Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the unit operation and water In temperature of the unit operation and water Be sure to provide interlocking for the unit operation and water Install the supplied insulation material around both water and refri 11230) erature: 86°F (30°C)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (6 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 3/8 (9.52) Brazed 7/8 (22.2) Brazed G487 CE94C823

MEE15K058

Heat Source				PQHY-P210	
Indoor Mode				Non-Ducted	Ducted
Power sourc				3-phase 3-wire 5	
Cooling capa	acity	*1		216,	
(Nominal)		D	kW	63	
	(575)	Power input	kW	14.	
F		Current input	A	16	
	(Rated)		BTU/h	206,	
		D · · ·	kW	60	
	(575)	Power input	kW	12.77	13.59
_	. ,	Current input	A	14.2	15.1
Temp. range	e of	Indoor	W.B.	59~75°F (
cooling		Circulating water	°F	50~113°F	
Heating capa	acity	*2	-	243,	
(Nominal)			kW	71	
	()	Power input	kW	14.	
F	()	Current input	Α	16	
	(Rated)		BTU/h	232,	
			kW	68	
		Power input	kW	13.88	13.93
		Current input	A	15.4	15.5
Temp. range	e of	Indoor	D.B.	59~81°F (
heating		Circulating water	°F	50~95°F (,
Indoor unit		Total capacity		50~130% of heat s	
connectable		Model/Quantity		P06~P9	
	sure level (mea	asured in anechoic room)	dB <a>	55	
Refrigerant		Liquid pipe	in. (mm)	5/8 (15.88	
piping diame	eter	Gas pipe	in. (mm)	1-1/8 (28.5	8) Brazed
Set Model					
Model				PQHY-P120ZKMU-A	PQHY-P96ZKMU-A
	rcuit Ampacity		А	13	12
Maximum Ov	vercurrent Pro	otection	А	22	20
Circulating w	vater	Water flow rate	G/h	1,522 +	1,522
-			G/min (gpm)	25.4 +	25.4
			m ³ /h	5.76 +	
			L/min		
			cfm	3.4 +	
		Pressure drop	psi	3.48	3.48
			kPa	24	24
		Operating volume range	G/h	1,189 + 1,189 ~	- 1,902 + 1,902
			G/min (gpm)	19.8 + 19.8 ~	
			m ³ /h	4.5 + 4.5 ~	
Compressor		Type x Quantity		Inverter scroll hermetic compressor x 1	Inverter scroll hermetic compressor x 1
00111p100001		Manufacture		AC&R Works, MITSUBISHI ELECTRIC CORPORATION	AC&R Works, MITSUBISHI ELECTRIC CORPORATIO
		Starting method		Inverter	Inverter
		Motor output	kW	7.7	6.0
		Case heater	kW	-	-
		Lubricant		MEL32	MEL32
External finis	sh			Galvanized steel sheets	Galvanized steel sheets
	nension H x W	хD	in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16
		-	mm	1.100 x 880 x 550	1,100 x 880 x 550
Drote eti '	ovioca	High processing and and		High pressure sensor, High pressure switch at 4.15 MPa (601	
Protection de	evices	High pressure protection	1	psi)	psi)
		Inverter circuit		Over-heat protection, Over-current protection	Over-heat protection, Over-current protection
		Compressor		Over-heat protection	Over-heat protection
Refrigerant		Type x original charge		R410A x 11 lbs + 1 oz (5.0 kg)	R410A x 11 lbs + 1 oz (5.0 kg)
- ·		Control		LEV and H	
Net weight			lbs (kg)	408 (185)	408 (185)
Heat exchan	nger			plate type	plate type
	-	Water volume in plate	G	1.32	1.32
		P	1	5.0	5.0
		Water pressure Max.	psi	290	290
			MPa	2.0	2.0
HIC circuit (H	HIC: Heat Inte	r-Changer)		Copper pipe, tube-in-tube structure	Copper pipe, tube-in-tube structure
Pipe betwee		Liquid pipe	in. (mm)	1/2 (12.7) Brazed	1/2 (12.7) Brazed
distributor		Gas pipe	in. (mm)	7/8 (22.2) Brazed	7/8 (22.2) Brazed
Drawing		External	/	KJ94	
5		Wiring		KE94C823	KE94C823
Standard atta	achment	Document			
		Accessory		Details refer to	External Drw
Optional par	ts	,		Heat Source Twinning	
P. F. S. Poll				joint: CMY-Y102SS-G2, CMY-Y102LS-	
				Header: CMY-Y1	
Remarks				Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be se The ambient temperature of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the wate Be sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-soct When installing insulation material around both water and refrif	ubject to change without notice. kept below 104°FD.B. (40°CD.B.) be kept below 80%. er inlet piping of the unit. circuit. tet.
Notes:					Unit converter
1.Nominal co		ons (Test conditions are b			BTU/h =kW x 3,412
Indoor: 81°	FD.B./66°FW	.B. (27°CD.B./19°CW.B.)	Water tempe	erature: 86°F (30°C)	cfm =m ³ /min x 35.31
2.Nominal he		ons (Test conditions are b		RI 1230)	lbs =kg/0.4536
	FD.B. (20°CL	.B.), Water temperature:	00 F (20 C)		*Above specification data

	01110
BTU/h	=k\
cfm	=m
lbs	=kg

*Above specification data is subject to rounding variation.

Heat Source Model			PQHY-P24	
Indoor Model			Non-Ducted	Ducted
Power source			3-phase 3-wire 5	75 V ±10% 60 Hz
Cooling capacity	*1	BTU/h		,000
(Nominal)		kW		0.3
(575	Power input	kW A		.17
(Rated)		A BTU/h		.000
(rutou)		kW		3.8
	Power input	kW	15.63	16.91
) Current input	А	17.4	18.8
Temp. range of	Indoor	W.B.	59~75°F (
cooling	Circulating water	°F BTU/h	50~113°F	(10~45°C) ,000
Heating capacity (Nominal)	2	kW	79	
(1101111101)	Power input	kW		.14
(575		A	19	0.1
(Rated)		BTU/h	258	,000
		kW		5.6
(676	Power input	kW	16.78 18.7	15.95 17.7
Temp. range of) Current input Indoor	A D.B.	18.7 59~81°F (
heating	Circulating water	°F	50~95°F (
Indoor unit	Total capacity	1	50~130% of heat s	
connectable	Model/Quantity			96/2~50
	easured in anechoic room)	dB <a>	-	7.0
Refrigerant	Liquid pipe	in. (mm)		8) Brazed
piping diameter Set Model	Gas pipe	in. (mm)	1-1/8 (28.5	bo) Brazed
Model			PQHY-P120ZKMU-A	PQHY-P120ZKMU-A
Minimum Circuit Ampacit	ty	А	13	13
Maximum Overcurrent P	/	А	22	22
Circulating water	Water flow rate	G/h		+ 1,522
		G/min (gpm)		+ 25.4
		m ³ /h L/min	5.76 - 96 -	
		cfm	3.4 -	
	Pressure drop	psi	3.48	3.48
		kPa	24	24
	Operating volume range	G/h		~ 1,902 + 1,902
		G/min (gpm)		~ 31.7 + 31.7
Comprossor	Type y Quentity	m ³ /h	4.5 + 4.5 - Inverter scroll hermetic compressor x 1	~ 7.2 + 7.2 Inverter scroll hermetic compressor x 1
Compressor	Type x Quantity Manufacture		AC&R Works, MITSUBISHI ELECTRIC CORPORATION	AC&R Works, MITSUBISHI ELECTRIC CORPORATION
	Starting method		Inverter	Inverter
	Motor output	kW	7.7	7.7
	Case heater	kW	-	-
			MEL32	MEL32
Enternal Galab	Lubricant			
External finish		in	Galvanized steel sheets	Galvanized steel sheets
External finish External dimension H x V		in. mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16
External dimension H x V	W x D	mm	Galvanized steel sheets	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550
	N x D High pressure protection	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi)
External dimension H x V	N x D High pressure protection	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60' psi) Over-heat protection, Over-current protection
External dimension H x V Protection devices	W x D High pressure protection Inverter circuit Compressor	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60' psi) Over-heat protection, Over-current protection Over-heat protection
External dimension H x V	N x D High pressure protection	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)
External dimension H x V Protection devices	W x D High pressure protection Inverter circuit Compressor Type x original charge	mm	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)
External dimension H x V Protection devices Refrigerant Net weight	W x D High pressure protection Inverter circuit Compressor Type x original charge Control	mm I Ibs (kg)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type
External dimension H x V Protection devices Refrigerant	W x D High pressure protection Inverter circuit Compressor Type x original charge	mm 1	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32
External dimension H x V Protection devices Refrigerant Net weight	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate	mm Ibs (kg) G I	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz 408 (185) plate type 1.32 5.0	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure switch at 4.15 MPa (60' psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0
External dimension H x V Protection devices Refrigerant Net weight	W x D High pressure protection Inverter circuit Compressor Type x original charge Control	mm I Ibs (kg)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max.	mm Ibs (kg) G I psi	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe	mm Ibs (kg) G I psi	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe	mm Ibs (kg) G I psi MPa	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wiring	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS-	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 800 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed G487 KE94C823 - b External Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS-	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823 D External Drw g kit: CMY-Y100CBK3
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KI94 KE94C823 Details refer tu Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS-	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer tt Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS. Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer tt Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer t Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS. Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to be The Heat Source Unit should not be installed at outdoor.	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 E94C823
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed XL94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to The Heat Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 CExternal Drw kE94C823 De External Drw j kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referre subject to change without notice. kept below 80%. er inlet piping of the unit. circuit.
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer t Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS. Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to be The ambient relative humidity of the Heat Source Unit needs to be The Heat Source Unit should not be installed at outdoor.	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823 CEXternal Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referred subject to change without notice. kept below 104°FD.B. (40°CD.B.) b be kept below 80%. er inlet piping of the unit. circuit.
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 1000000000000000000000000000000000000	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 CEremal Drw kE94C823 De External Drw kE94C823 De External Drw kI: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G Il wiring, power source switch, and other items shall be referred subject to change without notice. kept below 80%. er inlet piping of the unit. circuit.
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory	mm Ibs (kg) G I psi MPa in. (mm) in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 1408 (185) 132 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94 KE94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient relative humidity of the Heat Source Unit needs to be serve to mount a strainer (more than 50 meshes) at the wate les sure to provide interlocking for the unit operation and water Install the supplied insulation material to the unused drain-socd When installing insulation material around both water and refri	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) 112 408 (185) 1132 1290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 CEsternal Drw 9 kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referred subject to change without notice. kept below 104°FD.B. (40°CD.B.) b kept below 80%. er inlet piping of the unit. circuit. Unit converter
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wring Document	mm Ibs (kg) G I psi MPa in. (mm) in. (mm)	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) 1000 1000 1000 1000 1000 1000 1000 10	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) 11C circuit 408 (185) 11.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 112 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823 CEXternal Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referred subject to change without notice. kept below 104°FD.B. (40°CD.B.) b b kept below 80%. er inlet piping of the unit. cricuit. Unit converter BTU/h =kW x 3,412
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks Remarks	M x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory ons (Test conditions are b V.B. (27°CD.B./19°CW.B.) ons (Test conditions are b	mm Ibs (kg) G I psi MPa in. (mm) in. (mm) in. (mm) ased on AHR water temp ased on AHR	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection 0ver-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KL94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to The ambient temperature of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to the ambient relative fumidity of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to The ambient temperature of the unit operation and water Install the supplied insulation material to the unused drain-socd When installing insulation material around both water and refri	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 G487 G487 KE94C823 - D External Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G I wiring, power source switch, and other items shall be referred subject to change without notice. kept below 104°FD.B. (40°CD.B.) b b kept below 80%. er inlet piping of the unit. circuit. Unit converter BTU/h =KW x 3,412 cfm =m ³ /min x 35.31
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks Remarks	W x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory ons (Test conditions are b V.B. (27°CD.B./19°CW.B.)	mm Ibs (kg) G I psi MPa in. (mm) in. (mm) in. (mm) ased on AHR water temp ased on AHR	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection 0ver-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KL94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to The ambient temperature of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to the ambient relative fumidity of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to The ambient temperature of the unit operation and water Install the supplied insulation material to the unused drain-socd When installing insulation material around both water and refri	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) IC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823 CExternal Drw g kit: CMY-Y100CBK3 -G2, CMY-Y202S-G2, CMY-Y302S-G2 04/108/1010C-G al wiring, power source switch, and other items shall be referre subject to change without notice. kept below 104°FD.B. (40°CD.B.) b be kept below 80%. er inlet piping of the unit. circuit. Unit converter BTU/h =kW x 3,412 cfm =m ³ /min x 35.31
External dimension H x V Protection devices Refrigerant Net weight Heat exchanger HIC circuit (HIC: Heat Int Pipe between unit and distributor Drawing Standard attachment Optional parts Remarks Remarks Votes: I.Nominal cooling conditi Indoor: 81°FD.B./66°FV Z.Nominal heating conditi	M x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. ter-Changer) Liquid pipe Gas pipe External Wiring Document Accessory ons (Test conditions are b V.B. (27°CD.B./19°CW.B.) ons (Test conditions are b	mm Ibs (kg) G I psi MPa in. (mm) in. (mm) in. (mm) ased on AHR water temp ased on AHR	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current protection 0ver-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and I 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KL94C823 Details refer to Heat Source Twinning joint: CMY-Y102SS-G2, CMY-Y102LS Header: CMY-Y1 Details on foundation work, duct work, insulation work, electrica to the Installation Manual. Due to continuing improvement, above specifications may be s The ambient temperature of the Heat Source Unit needs to be The ambient temperature of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to The ambient temperature of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to the ambient relative fumidity of the Heat Source Unit needs to the ambient relative humidity of the Heat Source Unit needs to The ambient temperature of the unit operation and water Install the supplied insulation material to the unused drain-socd When installing insulation material around both water and refri	Galvanized steel sheets 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (60 psi) Over-heat protection, Over-current protection R410A x 11 lbs + 1 oz (5.0 kg) HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed G487 KE94C823

MEE15K058

Heat Source Model			1	PQHY-P264	ZSKMULA		
Indoor Model			Non-Ducted	FQUIT-P264	LONWO-A	Di	ucted
Power source			Non Buolou	3-phase 3-wire 57	5 V ±10% 60 Hz		
Cooling capacity	*1	BTU/h		264,0			
(Nominal)		kW		77.	4		
	Power input	kW		17.9	96		
(57	5) Current input	А		20.	0		
(Rated)		BTU/h		252,0			
		kW		73.	9		
	Power input	kW	14.61				6.71
	Current input	A	16.2			1	8.6
Temp. range of	Indoor	W.B.		59~75°F (1	,		
cooling	Circulating water	°F		50~113°F (
Heating capacity	*2	-		295,0			
(Nominal)	Dennesianat	kW		86.			
(57)	5) Current input	kW		17.2 19.			
(Rated)	b) Current input	A BTU/h		281,0			
(Italeu)		kW		82.			
	Power input	kW	15.52	02.	4	1	6.07
(57	5) Current input	A	17.3				7.9
Temp. range of	Indoor	D.B.		59~81°F (1	5~27°C)		1.0
heating	Circulating water	°F		50~95°F (
Indoor unit	Total capacity	1		50~130% of heat so	,		
connectable	Model/Quantity		1	P06~P9			
	easured in anechoic room)	dB <a>	1	52.			
Refrigerant	Liquid pipe	in. (mm)		3/4 (19.05) Brazed		
piping diameter	Gas pipe	in. (mm)		1-3/8 (34.9	3) Brazed		
Set Model							
Model			PQHY-P96ZKMU-A	PQHY-P96			PQHY-P72ZKMU-A
Minimum Circuit Ampaci	/	А	12	12			9
Maximum Overcurrent P		А	20	20			15
Circulating water	Water flow rate	G/h		1,522 + 1,52			
		G/min (gpm)		25.4 + 25.			
		m ³ /h		5.76 + 5.7			
		L/min		96 + 96			
		cfm		3.4 + 3.4			
	Pressure drop	psi	3.48	3.4	3		3.48
		kPa	24	24			24
	Operating volume range	G/h	1,	189 + 1,189 + 1,189 ~		902	
		G/min (gpm)	-	19.8 + 19.8 + 19.8 ~			
0	Trans a Quantita	m ³ /h	laurates a secul la surration a surrange a sur d	4.5 + 4.5 + 4.5 ~		lass and a s	II h 4 4
Compressor	Type x Quantity		Inverter scroll hermetic compressor x 1	Inverter scroll herme	•		scroll hermetic compressor x 1
	Manufacture		AC&R Works, MITSUBISHI ELECTRIC	AC&R Works, MITSU		AC&R V	Vorks, MITSUBISHI ELECTRIC
	Starting method		CORPORATION Inverter	CORPOR Inver			CORPORATION Inverter
	Motor output	kW	6.0	6.0			4.3
	Case heater	kW	0.0				-
	Lubricant	KVV	MEL32	MEL	32		MEL32
External finish	Eublidant		Galvanized steel sheets	Galvanized s			Galvanized steel sheets
External dimension H x V	W x D	in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/			5/16 x 34-11/16 x 21-11/16
		mm	1,100 x 880 x 550	1,100 x 88		.0	1,100 x 880 x 550
Protection devices	High procesure protection		High pressure sensor, High pressure	High pressure sense		Hiah p	ressure sensor, High pressure
FIDIECTION DEVICES	High pressure protection		switch at 4.15 MPa (601 psi)	switch at 4.15 M			itch at 4.15 MPa (601 psi)
	Inverter circuit		Over-heat protection, Over-current pro-	Over-heat protection		Over-he	at protection, Over-current pro-
			tection	tectio			tection
Defrigers	Compressor		Over-heat protection	Over-heat p			Over-heat protection
Refrigerant	Type x original charge		R410A x 11 lbs + 1 oz (5.0 kg)	R410A x 11 lbs + LEV and H		R41	0A x 11 lbs + 1 oz (5.0 kg)
Net weight	Control	lbs (kg)	408 (185)	LEV and F 408 (1			408 (185)
Heat exchanger		100 (NY)	plate type	plate t	,		plate type
out ononunger	Water volume in plate	G	1.32	1.33			1.32
		Ť	5.0	5.0			5.0
	Water pressure Max.	psi	290	290			290
	mate. produite max.	MPa	2.0	2.0			2.0
HIC circuit (HIC: Heat In	ter-Changer)		Copper pipe, tube-in-tube structure	Copper pipe, tube-		Coppe	er pipe, tube-in-tube structure
Pipe between unit and	Liquid pipe	in. (mm)	3/8 (9.52) Brazed	3/8 (9.52)		- 2664	3/8 (9.52) Brazed
distributor	Gas pipe	in. (mm)	7/8 (22.2) Brazed	7/8 (22.2)			7/8 (22.2) Brazed
Drawing	External	• ` '		KJ940		-	
-	Wiring		KE94C823	KE94C			KE94C823
Standard attachment	Document			-			
	Accessory			Details refer to	External Drw		
Optional parts				Heat Source Twinning		(2	
			joint: CMY-Y102S	S-G2, CMY-Y102LS-	G2, CMY-Y202S-G	2, CMY-Y	302S-G2
				Header: CMY-Y10			
Remarks			Details on foundation work, duct work, ir	sulation work, electric	al wiring, power so	urce swite	h, and other items shall be re-
			ferred to the Installation Manual.				
			Due to continuing improvement, above s				
			The ambient temperature of the Heat So The ambient relative humidity of the Heat				.U.В.)
			The Heat Source Unit should not be inst		ne vehr neiow 80	/0.	
			Be sure to mount a strainer (more than s		er inlet pipina of the	e unit.	
			Be sure to provide interlocking for the ur	nit operation and water	circuit.		
			Install the supplied insulation material to				
			When installing insulation material arour	nd both water and refri	gerant piping, follo	v the insta	allation manual.
Notes:							Unit converter
	ons (Test conditions are bas	ed on AHRI	1230)				BTU/h =kW x 3,412
	V.B. (27°CD.B./19°CW.B.), \						$cfm = m^3/min \times 35.31$

Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)

lbs

Heat Source Model				PQHY-P288ZSKMU-A	
Indoor Model			Non-Ducted		Ducted
Power source				3-phase 3-wire 575 V ±10% 60 Hz	
Cooling capacity	*1	BTU/h		288,000	
(Nominal)	Power input	kW kW		<u>84.4</u> 19.98	
(575) Current input	A		22.2	
(Rated)		BTU/h		275,000	
	Device is not	kW	10.10	80.6	40.50
(575	Power input) Current input	kW A	16.42 18.3		18.59 20.7
Temp. range of	Indoor	W.B.	10.0	59~75°F (15~24°C)	
cooling	Circulating water	°F		50~113°F (10~45°C)	
Heating capacity	*2	BTU/h kW		<u>323,000</u> 94.7	
(Nominal)	Power input	kW		19.55	
(575	·	A		21.8	
(Rated)		BTU/h		308,000	
	Dewer input	kW	17.04	90.3	19.10
(575	Power input) Current input	kW A	17.31 19.3		18.19 20.2
Temp. range of	Indoor	D.B.	10.0	59~81°F (15~27°C)	20.2
heating	Circulating water	°F		50~95°F (10~35°C)	
Indoor unit	Total capacity			50~130% of heat source unit capacity	1
connectable Sound pressure level (me	Model/Quantity easured in anechoic room)	dB <a>		P06~P96/2~50 53.0	
Refrigerant	Liquid pipe	in. (mm)		3/4 (19.05) Brazed	
piping diameter	Gas pipe	in. (mm)	<u> </u>	1-3/8 (34.93) Brazed	
Set Model					
Model Minimum Circuit Ampacity	4	A	PQHY-P96ZKMU-A 12	PQHY-P96ZKMU-A 12	PQHY-P96ZKMU-A 12
Maximum Overcurrent Pr	/	A	20	20	20
Circulating water	Water flow rate	G/h		1,522 + 1,522 + 1,522	
		G/min (gpm)		25.4 + 25.4 + 25.4	
		m ³ /h	4	5.76 + 5.76 + 5.76	
		L/min cfm	4	96 + 96 + 96 3.4 + 3.4 + 3.4	
	Pressure drop	psi	3.48	3.48	3.48
		kPa	24	24	24
	Operating volume range	G/h	1,	189 + 1,189 + 1,189 ~ 1,902 + 1,902 + 1	
		G/min (gpm) m ³ /h	-	19.8 + 19.8 + 19.8 ~ 31.7 + 31.7 + 31.7 4.5 + 4.5 + 4.5 ~ 7.2 + 7.2 + 7.2	7
Compressor	Type x Quantity	111 /11	Inverter scroll hermetic compressor x 1	Inverter scroll hermetic compressor x 1	Inverter scroll hermetic compressor
	Manufacture		AC&R Works, MITSUBISHI ELECTRIC	AC&R Works, MITSUBISHI ELECTRIC	
			CORPORATION	CORPORATION	CORPORATION
	Starting method		Inverter	Inverter	Inverter
	Motor output Case heater	kW kW	6.0	6.0	6.0
	Lubricant		MEL32	MEL32	MEL32
External finish			Galvanized steel sheets	Galvanized steel sheets	Galvanized steel sheets
External dimension H x W	/ x D	in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16
Desta sting devices		mm	1,100 x 880 x 550 High pressure sensor, High pressure	1,100 x 880 x 550 High pressure sensor, High pressure	1,100 x 880 x 550 High pressure sensor, High pressu
Protection devices	High pressure protection		switch at 4.15 MPa (601 psi)	switch at 4.15 MPa (601 psi)	switch at 4.15 MPa (601 psi)
	Inverter circuit		Over-heat protection, Over-current pro- tection	Over-heat protection, Over-current pro- tection	 Over-heat protection, Over-current p tection
	Compressor		Over-heat protection	Over-heat protection	Over-heat protection
Refrigerant	Type x original charge		R410A x 11 lbs + 1 oz (5.0 kg)	R410A x 11 lbs + 1 oz (5.0 kg)	R410A x 11 lbs + 1 oz (5.0 kg)
Notwoight	Control	lbo (ka)	400 (405)	LEV and HIC circuit	400 (405)
Net weight Heat exchanger		lbs (kg)	408 (185) plate type	408 (185) plate type	408 (185) plate type
	Water volume in plate	G	1.32	1.32	1.32
		1	5.0	5.0	5.0
	Water pressure Max.	psi	290	290	290
HIC circuit (HIC: Heat Inte	er-Changer)	MPa	2.0 Copper pipe, tube-in-tube structure	2.0 Copper pipe, tube-in-tube structure	2.0 Copper pipe, tube-in-tube structur
Pipe between unit and	Liquid pipe	in. (mm)	3/8 (9.52) Brazed	3/8 (9.52) Brazed	3/8 (9.52) Brazed
distributor	Gas pipe	in. (mm)	7/8 (22.2) Brazed	7/8 (22.2) Brazed	7/8 (22.2) Brazed
Drawing	External		KE040000	KJ94G488	KE040000
Standard attachment	Wiring Document		KE94C823	KE94C823	KE94C823
	Accessory			- Details refer to External Drw	
Optional parts			1	Heat Source Twinning kit: CMY-Y300CB	3K2
			joint: CMY-Y1025	SS-G2, CMY-Y102LS-G2, CMY-Y202S-G	G2, CMY-Y302S-G2
Remarks			Datails on foundation work, duct work in	Header: CMY-Y104/108/1010C-G nsulation work, electrical wiring, power se	ource switch and other items shall be
ionane -			ferred to the Installation Manual. Due to continuing improvement, above s The ambient temperature of the Heat So The ambient relative humidity of the Heat The Heat Source Unit should not be inst Be sure to mount a strainer (more than 1 Be sure to provide interlocking for the ur Install the supplied insulation material to	specifications may be subject to change burce Unit needs to be kept below 104°F at Source Unit needs to be kept below 80 talled at outdoor. 50 meshes) at the water inlet piping of th nit operation and water circuit. the unused drain-socket.	without notice. D.B. (40°CD.B.) 0%. ne unit.
Notoo:			When installing insulation material arour	nd both water and refrigerant piping, follo	
Notes: 1.Nominal cooling condition	ons (Test conditions are ba	sed on AHRI	1230)		Unit converter BTU/h =kW x 3,412
Indoor: 81°FD.B./66°FW 2.Nominal heating conditi	<i>I.B.</i> (27°CD.B./19°CW.B.), ons (Test conditions are ba D.B.), Water temperature: 6	Water temper ased on AHRI	ature: 86°F (30°C)		cfm = $m^3/min \times 35.31$ lbs = $kg/0.4536$
					*Above specification data

MEE15K058

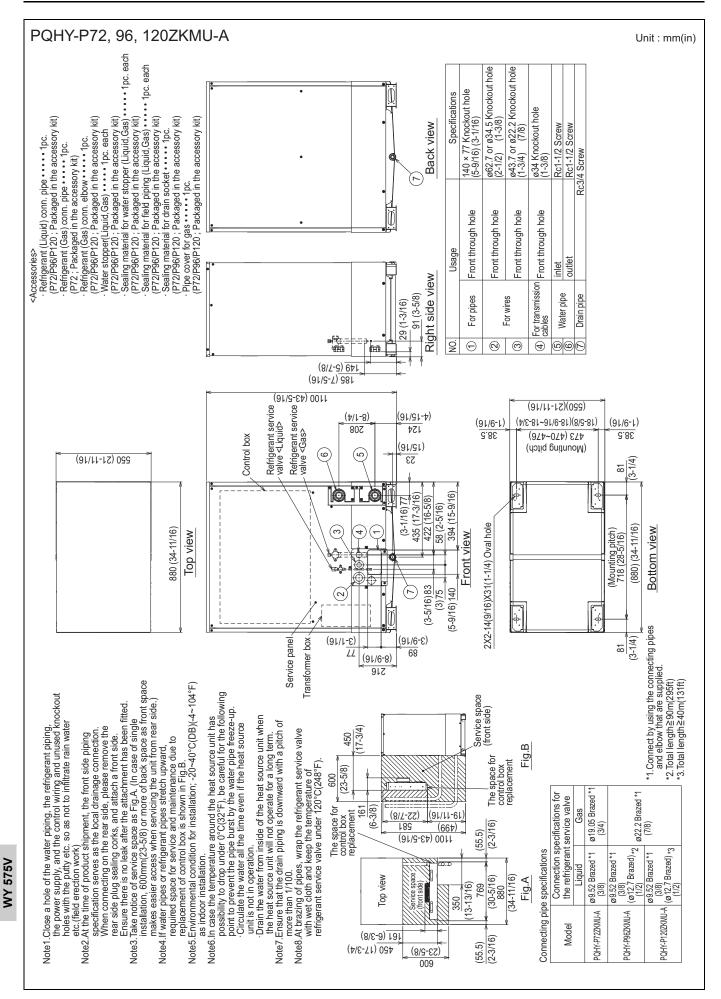
subject to rounding variation.

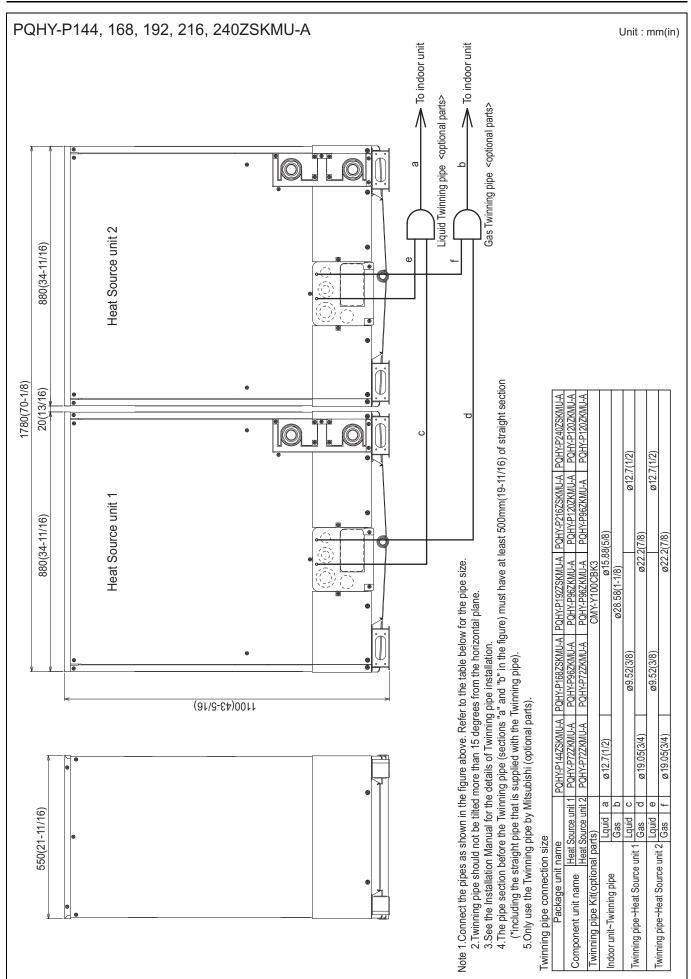
Indoor Mode	e Model			Non-Ducted	PQHY-P312ZSKMU-A	Ducted
Power sourc				Non-Ducted	3-phase 3-wire 575 V ±10% 60	
Cooling capa		*1	BTU/h		312,000	112
Nominal)	aony		kW		91.4	
		Power input	kW		22.41	
	(575)	Current input	А		25.0	
	(Rated)		BTU/h		297,000	
	. ,		kW		87.0	
		Power input	kW	19.28		20.85
	(575)	Current input	А	21.5		23.2
Temp. range	e of	Indoor	W.B.		59~75°F (15~24°C)	
cooling		Circulating water	۴F		50~113°F (10~45°C)	
Heating capa	acity	*2	BTU/h		350,000	
(Nominal)			kW		102.6	
		Power input	kW		21.52	
	(575)	Current input	А		24.0	
	(Rated)		BTU/h		334,000	
			kW		97.9	
		Power input	kW	20.10		20.02
	(575)	Current input	А	22.4		22.3
Temp. range	e of	Indoor	D.B.		59~81°F (15~27°C)	
neating		Circulating water	°F		50~95°F (10~35°C)	
ndoor unit	-	Total capacity			50~130% of heat source unit capa	acity
connectable	e	Model/Quantity			P06~P96/2~50	
Sound press	sure level (mea	sured in anechoic room)	dB <a>		56.0	
Refrigerant		Liquid pipe	in. (mm)		3/4 (19.05) Brazed	
piping diame	eter	Gas pipe	in. (mm)		1-3/8 (34.93) Brazed	
Set Model						
Model				PQHY-P120ZKMU-A	PQHY-P96ZKMU-A	PQHY-P96ZKMU-A
Minimum Cir	rcuit Ampacity		А	13	12	12
	vercurrent Pro	tection	A	22	20	20
Circulating w	water	Water flow rate	G/h		1,522 + 1,522 + 1,522	·
-			G/min (gpm)]	25.4 + 25.4 + 25.4	
			m ³ /h]	5.76 + 5.76 + 5.76	
			L/min]	96 + 96 + 96	
			cfm		3.4 + 3.4 + 3.4	
		Pressure drop	psi	3.48	3.48	3.48
			kPa	24	24	24
		Operating volume range	G/h	1,	189 + 1,189 + 1,189 ~ 1,902 + 1,902	2 + 1,902
			G/min (gpm)		19.8 + 19.8 + 19.8 ~ 31.7 + 31.7 +	31.7
			m ³ /h		4.5 + 4.5 + 4.5 ~ 7.2 + 7.2 + 7.	.2
Compressor	r	Type x Quantity		Inverter scroll hermetic compressor x 1	Inverter scroll hermetic compresso	r x 1 Inverter scroll hermetic compressor x
·				AC&R Works, MITSUBISHI ELECTRIC	AC&R Works, MITSUBISHI ELECT	
		Manufacture		CORPORATION	CORPORATION	CORPORATION
		Starting method		Inverter	Inverter	Inverter
		Motor output	kW	7.7	6.0	6.0
		Case heater	kW	-	-	-
		Lubricant		MEL32	MEL32	MEL32
				Galvanized steel sheets	Galvanized steel sheets	Galvanized steel sheets
External finis	sh					Garvanized steel sheets
	sh nension H x W		in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16	
			in. mm	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550	
External dim	nension H x W	x D	mm			43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550
	nension H x W		mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi)	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi)	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 ure High pressure sensor, High pressur switch at 4.15 MPa (601 psi)
External dim	nension H x W	x D	mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro-	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressur switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr
External dim	nension H x W	x D High pressure protection Inverter circuit	mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection
External dim	nension H x W	x D High pressure protection Inverter circuit Compressor	mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pr tection Over-heat protection
External dim	nension H x W	x D High pressure protection Inverter circuit Compressor Type x original charge	mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pr tection Over-heat protection
External dim Protection de Refrigerant	nension H x W	x D High pressure protection Inverter circuit Compressor	mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg)	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg LEV and HIC circuit	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure sensor, High pressure sensor, High pressure switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pretection Over-heat protection Over-heat protection 0ver-heat protection Over-heat protection 0 R410A x 11 lbs + 1 oz (5.0 kg)
External dim Protection de Refrigerant Net weight	nension H x W levices	x D High pressure protection Inverter circuit Compressor Type x original charge	mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185)	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185)	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressur switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection Over-heat protection Over-heat protection) R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) 408 (185)
External dim Protection de Refrigerant Net weight	nension H x W levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control	mm Ibs (kg)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 iure High pressure sensor, High pressur switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection Over-heat protection, Over-current pr tection 0 Ner-heat protection 0 R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type
External dim Protection de Refrigerant Net weight	nension H x W levices	x D High pressure protection Inverter circuit Compressor Type x original charge	mm	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 iure High pressure sensor, High pressure
External dim	nension H x W levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate	mm Ibs (kg) G I	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressu
External dim Protection de Refrigerant Net weight	nension H x W levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control	mm Ibs (kg) G I psi	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure sensor, High pressure sensor, High pressure switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection Over-heat protection Over-heat protection Nover-heat protection Over-heat protection 1 105 x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 290
External dim Protection de Refrigerant Net weight Heat exchan	levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max.	mm Ibs (kg) G I	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure sensor, High pressure sensor, High pressure sensor, High pressure tection pro- Over-heat protection, Over-current pretection Over-heat protection Over-heat protection) R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0
External dim Protection de Refrigerant Net weight Heat exchan	levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer)	mm Ibs (kg) G I psi MPa	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betwee	levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressur switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection Over-heat protection, Over-current pr tection 0 Ner-heat protection 0 R410A x 11 lbs + 1 oz (5.0 kg) 1.32 5.0 290 2.0 2.0 2.0 ure Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 1/2 (12.7) Brazed
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betweet distributor	levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. Changer) Liquid pipe Gas pipe	mm Ibs (kg) G I psi MPa	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressure
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betwee	levices	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High presse
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betweei distributor Drawing	evices evices evices HIC: Heat Inter en unit and	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Easternal Wiring	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressur switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection Over-heat protection, Over-current pr tection 0 Ner-heat protection 0 R410A x 11 lbs + 1 oz (5.0 kg) 1.32 5.0 290 2.0 2.0 2.0 ure Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 1/2 (12.7) Brazed
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betweet distributor	evices evices evices HIC: Heat Inter en unit and	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External Wiring Document	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488 KE94C823	i 43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressur switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection Over-heat protection, Over-current pr tection 0 R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) 1.32 5.0 290 2.0 re Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe between distributor Drawing Standard atta	ension H x W levices nger HIC: Heat Inter en unit and tachment	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Easternal Wiring	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed KJ94G488 KE94C823 - Details refer to External Drw	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pressur switch at 4.15 MPa (601 psi) pro- Over-heat protection, Over-current pr tection Over-heat protection NR410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe between distributor Drawing Standard atta	ension H x W levices nger HIC: Heat Inter en unit and tachment	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External Wiring Document	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488 KE94C823 - Details refer to External Drw Heat Source Twinning kit: CMY-Y30 SS-G2, CMY-Y102LS-G2, CMY-Y20	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High presser, Hig
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betweet distributor Drawing Standard atta Optional part	ension H x W levices nger HIC: Heat Inter en unit and tachment	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External Wiring Document	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823 Letails on foundation work, duct work, ir ferred to the Installation Manual. Due to continuing improvement, above s The ambient reparture of the Heat SC The ambient relative humidity of the Heat Be sure to mount a strainer (more than f Be sure to provide interlocking for the ur Install the supplied insulation material to	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488 KE94C823 - Details refer to External Drw Heat Source Twinning kit: CMY-Y30 SS-G2, CMY-Y102LS-G2, CMY-Y20 Header: CMY-Y104/108/1010C rsulation work, electrical wiring, pow specifications may be subject to char surce Unit needs to be kept below 11 at Source Unit needs to be kept below alled at outdoor. 50 meshes) at the water inlet piping nit operation and water circuit.	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pr
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betweet distributor Drawing Standard atta Dptional part	ension H x W levices nger HIC: Heat Inter en unit and tachment	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External Wiring Document	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823 Locomponent, above s The ambient relative humidity of the Heat Scomponent, relative humidity of the Heat Super the structure of the Heat Source Unit should not be inst Be sure to provide interlocking for the ur	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488 KE94C823 - Details refer to External Drw Heat Source Twinning kit: CMY-Y30 SS-G2, CMY-Y102LS-G2, CMY-Y20 Header: CMY-Y104/108/1010C rsulation work, electrical wiring, pow specifications may be subject to char surce Unit needs to be kept below 11 at Source Unit needs to be kept below alled at outdoor. 50 meshes) at the water inlet piping nit operation and water circuit.	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pr
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betweet distributor Drawing Standard atta Optional part Remarks	ension H x W levices nger HIC: Heat Inter en unit and tachment	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External Wiring Document	mm Ibs (kg) G I psi MPa in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823 Letails on foundation work, duct work, ir ferred to the Installation Manual. Due to continuing improvement, above s The ambient reparture of the Heat SC The ambient relative humidity of the Heat Be sure to mount a strainer (more than f Be sure to provide interlocking for the ur Install the supplied insulation material to	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488 KE94C823 - Details refer to External Drw Heat Source Twinning kit: CMY-Y30 SS-G2, CMY-Y102LS-G2, CMY-Y20 Header: CMY-Y104/108/1010C rsulation work, electrical wiring, pow specifications may be subject to char surce Unit needs to be kept below 11 at Source Unit needs to be kept below alled at outdoor. 50 meshes) at the water inlet piping nit operation and water circuit.	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, High pr
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe between distributor Drawing Standard atta Optional part Remarks	evices evices evices HIC: Heat Inter en unit and tachment tts	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External Wiring Document Accessory	mm Ibs (kg) G I psi MPa in. (mm) in. (mm)	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823 Letails on foundation work, duct work, in ferred to the Installation Manual. Due to continuing improvement, above s The ambient relative humidity of the Heat The Heat Source Unit should not be inst Be sure to mount a strainer (more than § Be sure to provide interlocking for the ur Install the supplied insulation material arour	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488 KE94C823 - Details refer to External Drw Heat Source Twinning kit: CMY-Y30 SS-G2, CMY-Y102LS-G2, CMY-Y20 Header: CMY-Y104/108/1010C rsulation work, electrical wiring, pow specifications may be subject to char surce Unit needs to be kept below 11 at Source Unit needs to be kept below alled at outdoor. 50 meshes) at the water inlet piping nit operation and water circuit.	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, and the sensor
External dim Protection de Refrigerant Net weight Heat exchan HIC circuit (H Pipe betweed distributor Drawing Standard atta Optional part Remarks Iotes: .Nominal co	evices evices evices HIC: Heat Inter en unit and tachment ts coling condition	x D High pressure protection Inverter circuit Compressor Type x original charge Control Water volume in plate Water pressure Max. -Changer) Liquid pipe Gas pipe External Wiring Document	mm Ibs (kg) G I psi MPa in. (mm) in. (mm) sed on AHRI /	1,100 x 880 x 550 High pressure sensor, High pressure switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro- tection Qver-heat protection, Over-current pro- tection R410A x 11 lbs + 1 oz (5.0 kg) 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structure 1/2 (12.7) Brazed 7/8 (22.2) Brazed KE94C823 Details on foundation work, duct work, ir ferred to the Installation Manual. Due to continuing improvement, above se The ambient relative humidity of the Heat SC The ambient relative humidity of the Heat Be sure to provide interlocking for the ur Install the supplied insulation material arour 1230)	1,100 x 880 x 550 High pressure sensor, High press switch at 4.15 MPa (601 psi) Over-heat protection, Over-current tection Over-heat protection R410A x 11 lbs + 1 oz (5.0 kg) LEV and HIC circuit 408 (185) plate type 1.32 5.0 290 2.0 Copper pipe, tube-in-tube structu 1/2 (12.7) Brazed 7/8 (22.2) Brazed KJ94G488 KE94C823 - Details refer to External Drw Heat Source Twinning kit: CMY-Y30 SS-G2, CMY-Y102LS-G2, CMY-Y20 Header: CMY-Y104/108/1010C rsulation work, electrical wiring, pow specifications may be subject to char surce Unit needs to be kept below 11 at Source Unit needs to be kept below alled at outdoor. 50 meshes) at the water inlet piping nit operation and water circuit.	43-5/16 x 34-11/16 x 21-11/16 1,100 x 880 x 550 High pressure sensor, Line (12, 12, 13, 12, 13, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13

*Above specification data is subject to rounding variation.

Important No. Date: Date: Date: Nerrall Normal: Norma: Normal: Norma: Norma: <td< th=""><th></th><th>Heat Source Model</th><th></th><th></th><th></th><th>PQHY-P336ZSKMU-A</th><th></th></td<>		Heat Source Model				PQHY-P336ZSKMU-A			
District Company * Interm District Company * Interm District Company * District Company Provide Company	Contig capery (intering) Image: marked biology (intering) Image: marked biology (intering				Non-Ducted	FQITT-F33023KW0-A	Ducted		
Normal W BS (Part Fig.) W 24.87 (Part Fig.) UP UP 22.31 (Part Fig.) UP UP UP (Part Fig.) UP UP UP UP (Part Fig.) UP UP UP UP UP (Part Fig.) UP UP UP UP UP UP (Part Fig.) UP	Non-mit With Page (D) Continue NU 22.5 23.5 (D) Continue NU 22.5 23.5 (D) Continue NU 23.5 23.5 (D) Continue NU 23.6 23.5 (D) Continue NU 23.6 23.5 (P) Continue NU 23.6 23.6 (P) Continue NU 23.3 23.6 (P) Continue NU 23.3 23.6 (P) Continue NU 23.3 24.6 (P) Continue NU 23.0 24.6 (P) Continue NU 23.0 24.6 (P) Continue NU 23.6 24.6 <t< td=""><td></td><td></td><td></td><td></td><td>3-phase 3-wire 575 V ±10% 60 Hz</td><td></td></t<>					3-phase 3-wire 575 V ±10% 60 Hz			
Image: Spectra right of the second	University With instrument 2446 Priodity With instrument 213 Targe range (priodity) With instrument 223 Considering with instrument 31 221 Considering with instrument 31 31 Considering with instrument 31 31 Considering with instrument 31 32 Considering with instrument 31 32 Considering with instrument 31 32 Considering with instrument 32 32 Considering with instrument		*1						
(arr) (arr) (b) (arr) (b)	(178) Draw in Jun A 77 (178) Toru in Jun A 23.1 77 (178) Toru in Jun A 25.1 77 78 (178) Toru in Jun A 25.1 77 78 (178) Toru in Jun A 25.1 78 78 (178) Toru in Jun A 25.1 78 78 (178) Toru in Jun A 25.3 75 78 (178) Toru in Jun A 75 78 78 (178) Toru in Jun A 75 78 78 (178) Toru in Jun A 75 78 78 78 (178) Toru in Jun A 75 78	(Nominal)							
Image is a second sec	Plate Bits 300.000 17% Constructure 10% 23.1 23.3 17% Constructure 9% 20.1 23.4 17% Constructure 9% 20.1 23.4 17% Constructure 10.0 23.4 20.1 17% Constructure 40.1 20.1 20.1 20.1 17% Constructure 40.1 20.3 22.0 20.1 17% Constructure 40.1 20.3 20.1 20.5 17% Constructure 40.1 20.3 20.1 20.5 17% Constructure 40.4 20.2 20.1 20.1 20.5 17% Constructure 30.4 10.2 10.2 20.2 20.1 20.1 <t< td=""><td>(</td><td></td><td></td><td></td><td></td><td></td></t<>	(
Num Num State Automation 1920 Construct on the state of the	With Instrument of the second secon		5) Current Input						
Image: Control of the second	Unit Description With 22.51 0.213 23.3 Series Document Park A. D. 0.9777 (*5.475.) 23.8 Series Document Park A. D. 0.9777 (*5.475.) 23.8 Series The Data Park Park Park Park Park Park Park Par	(Raleu)							
Integration Integration A. A. A. A. A. Integration Integration 60-177 (E-AC) Integration 60-177 (E-AC) Handpaper Transmission Transmission Transmission Transmission Integration Transmission Transmission Transmission Transmission Transmission Transmission Integration Transmission T	(p) (p) <td></td> <td>Power input</td> <td></td> <td>22.51</td> <td></td> <td>23 13</td>		Power input		22.51		23 13		
Insol Web Status Status Conclusion Conclusi	Tesp. snapi Door W B GP-2FF (15-2FC) Henry spectry W 0-1753 (0-4FC) 0 Henry spectry W 0-2153 (0-4FC) 0 (575) Control type W 2-350 0 (575) Control type W 2-350 0 0 (575) Control type W 2-352 0 0 (575) Control type N 2-352 0 0 (575) Control type N 2-352 0 0 (575) Control type N 2-352 0	(57							
Premia Status Status Status Status	Tealing sealary 2 10h 375.000 (X7) Constrained 200 200 200 200 (X7) Constrained 400 200 200 200 200 (X7) Constrained 400					59~75°F (15~24°C)			
Normal WK 1103 (D) Comment reput A 34.4 (D) Comment reput A 34.0 (D) Comment reput A 36.0 (D) Comment reput A 36.0 (D) Comment reput A 132.2 23.2 (D) Comment reput A 132.2 23.2 (D) Comment reput A 34.4 34.4 (D) Comment reput A 34.4 34.4 (D) Comment reput A <td>Non-tig No 1163 (PS) Construct report A 100 20.0 (PS) Construct report A 100 20.0 (PS) Construct report A 100 20.0 (PS) Construct report A 20.0 20.0 (PS) Construct report D 20.0 20.0 20.0 (PS) Construct report D A 20.0 20.0 20.0 (PS) Construct report D A 20.0</td> <td>cooling</td> <td>Circulating water</td> <td>°F</td> <td></td> <td>50~113°F (10~45°C)</td> <td></td>	Non-tig No 1163 (PS) Construct report A 100 20.0 (PS) Construct report A 100 20.0 (PS) Construct report A 100 20.0 (PS) Construct report A 20.0 20.0 (PS) Construct report D 20.0 20.0 20.0 (PS) Construct report D A 20.0 20.0 20.0 (PS) Construct report D A 20.0	cooling	Circulating water	°F		50~113°F (10~45°C)			
Procempting With 23.06 (Parket) BV/m 302.00 302.00 (Parket) BV/m 302.00 22.33 (Parket) BV/m 302.00 22.33 (Parket) BV/m 30.32 (Parket) (Parket) BV/m 20.32 22.33 (Parket) BV/m 20.32 22.33 (Parket) BV/m 20.32 22.33 (Parket) BV/m 20.32 22.33 (Parket) BV/m BV/m 20.32 20.35 (Parket) BV/m BV/m BV/m BV/m BV/m (Parket) BV/m BV/m BV/m BV/m BV/m BV/m (Parket) BV/m <	Import input NM 20.03 (Bhttr) EU 314.4 314.4 (Bhttr) EU 314.4 314.4 (Bhttr) EU 314.4 314.4 (Bhttr) EU 314.4 314.4 (Bhttr) EV 20.32 10.0 22.03 (Bhttr) Event input NW 20.32 10.0 24.5 (Bhttr) Event input NW 20.32 10.0 24.5 (Bhttr) Event input NO 10.0 <	Heating capacity	*2	BTU/h		378,000			
(475) Content input A 38.4 (186) FUL Structure 361.000 22.03 (187) Fore regist of the structure 20.0 22.03 22.03 (187) Fore regist of the structure 0.0 50.4 20.0 22.03 (187) Fore regist of the structure 0.0 50.4 50.6 0.0 0.	(15) Control input A Bit A (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15)	(Nominal)							
[Fisher] IPUIN 391.00 (YP) Dimensing and the second stand of the second stand stan	IPate 10 (5) BTUN (W) B30.00 (6.6) Common (C) (5) Common (Lag) W/V 23.32 (6.6) 23.33 (1) Common (Lag) W/V 23.32 (1) 23.33 (1) Common (Lag) W/V 23.33 (1) 23.33 (1) Common (Lag) Set Set (C) (1) 23.33 (1) Common (Lag) Set Set (C) (2) (2) (1) Common (Lag) Set Set (C) (2) (2) (1) Common (Lag) (1) (2) (2) (2) (1) Common (Lag) (2)								
With 100-8	No. No. No. No. No. No. Terg: range (275) Commit print A.8 A.8 <td>· · · · · · · · · · · · · · · · · · ·</td> <td>5) Current input</td> <td></td> <td></td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·	5) Current input						
Image:	Import input No. 23.32 22.03 Terror. range of the door with the second member of the door with the second member of the door with the second member of	(Rated)							
(95) Construing oute A 280 2415 eating constraints Ondoor 0.0	Instant (g15) Control input of A A 28.0 A 28.0 Instant Instant input of Circularity water F 0.00000000000000000000000000000000000		Power input		23.32	105.0	22.03		
Index DB 09-0175 [11-27-10] Index 09-0175 [11-27-10] 00-0175 [11-27-10] Index 100-0175 [11-27-10] 00-0175 [11-27-10] Index 100-0175 [11-27-10] 00-0175 [11-27-10] Index 100-0175 [11-27-10] 00-0175 [11-27-10] Index 100-0177 [11-27-10] 00-0175 [11-27-10] Index 100-0177 [11-27-10] 00-0175 [11-27-10] Index 100-0177 [11-27-10] 00-0177 [11-27-10] Index 100-0177 [11-27-10] 00-0177 [11-27-10] Index 100-0177 [11-27-10] 00-0177 [11-27-10] Index 100-0177 [11-27-10] 10-0177 [11-27-10]	Tomp: angle of biologing water Producting water P 160-117(1) Refare and the stand and capacity in the stand and the stand and capacity in the stand and capacity in the	(57							
Index Fund Total space processible 99-130% of heat source unit space/0 Source presentative for the searce of an angebox room) de A 37.5 Source presentative for the searce of angebox room) de A 37.5 Source presentative for the searce of angebox room) de A 37.5 Source presentative for the searce of angebox room) de A 37.5 Source presentative for the searce of angebox room) de A 1.000 FU/T PIE2200.00.A POHY-PIE2200.00.A Source presentative for the searce of angebox room of angebox	Indoor Initi Total capaday B0-130% of heat source wire lapschy Sourd pressure level (messured in amethics com) B0 - 120% of heat source wire lapschy Sourd pressure level (messured in amethics com) POHY P120250MLA					59~81°F (15~27°C)			
Democrabelo Model Country PDI-PR02-90 Selfgenart Lund pipe and refer Lund pipe In (mn) 334 (1005) fibrand Selfgenart Lund pipe In (mn) 133 (1005) fibrand PDI-PR02-MDLA Minumer Ciocal Angealy A 22 2 30 Minumer Ciocal Angealy A 22 2 30 Minumer Ciocal Angealy A 22 2 30 Scient James Cink ingeal 24 + 25 + 252 30 Disolating availar One ingeal 23 + 15 + 3 - 3 9 9 + 5 + 1602 + 160	Image:	heating	Circulating water	°F		50~95°F (10~35°C)			
Soud presume tree (Immesured a matchine norm) 86 Ab 97.5 Soud presume tree (Immesured a matchine norm) 1-56 (41.28) Brazed 1-56 (41.28) Brazed Spring diameter Gas point 1-56 (41.28) Brazed 22 23 Manual Check Angeoty A 13 13 12 20 Manual Check Angeoty A 22 22 20 20 Scient Stress Angeoty A 24 124	Sond pressure level (measured an anecho room) 86 4-A 97.5 Refignorm Class pipe In, (mm) 34 (150,0) Rozed oping dameter Class pipe In, (mm) 150 (150,0) Rozed oping dameter Class pipe In, (mm) 150 (150,0) Rozed PQHY-049274001-A Minimum Concurrence A 120 (120,0) Rozed 22 20 Circulating water Mater flow rate Chin 23 (120,0) Rozed 34 (120,0) Rozed Circulating water Mater flow rate Chin Comp ration 34 (120,0) Rozed 34 (120,0) Rozed Circulating water Mater flow rate Chin Comp ration 34 (120,0) Rozed 34 (120,0) Rozed Circulating water Construction Roze (120,0) Rozed 34 (120,0) Rozed 34 (120,0) Rozed 34 (120,0) Rozed Compressor Type x Quantity Investmentic compressor X 1, 169 + 1, 169 - 1, 130 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 - 1, 302 + 1, 302 + 1, 302 - 1, 302 + 1, 302 + 1, 302 - 1, 302 + 1, 302 + 1, 302 - 1, 302 + 1, 302 + 1, 302 + 1, 302 + 1, 302 + 1, 302 + 1, 302 + 1, 302 + 1, 30								
Seleption Liquid pape in, rmm 344 (19.05) Based Set Model Instrum	Refingent Lique page In. (mm) 394 (19.05) Brazed Sel Model Gas ppg In. (mm) 1-06 (41.80) Brazed POHY-P12020MU-A								
Dipping dameter Disp pipe In. (mm) 1.56 (H 22) Blazzed Model POHY-P1202XMUA POHY-P1202XMUA POHY-P1202XMUA Model 13 13 12 Model A 13 13 12 Model A 13 13 12 Model Common December Provides A 12 20 Doculating values A 13 34 12 Doculating values Common December Provides A 13 20 Doculating values Common December Provides A 13 20 Doculating values Common December Provides A 13 34 34 Doculating values Common December Provides A 34 34 24 Common December Provides Differencember Provides A 34 34 34 Common December Provides Differencember Provides A 34 34 34 34 34 34 34 34 34	Open generater Open generater Open generater POHY-P1202KMU.A POHY-P1202KMU.A POHY-P1202KMU.A Model A 13 13 13 12 20 Model A 22 152 12 20 Diroularge water A 12 20 20 20 Orrularge water Open company A 24		,						
Set Model POHY P1302XMUA POHY P1302XMUA POHY P1302XMUA POHY P1302XMUA Minnum Overturent Poetcion A 13 13 12 Minnum Overturent Poetcion A 12 12 0 Circulating writer Water flow rate Different Poetcion 12 0 12 Circulating writer Water flow rate Different Poetcion 12 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0	Set Model PCHV-P12020AULA PCHV-P12020AULA PCHV-P12020AULA Minimum Ovecuries A 13 12 PCHV-P12020AULA Minimum Ovecuries A 13 12 20 Discult Anguadiy A 132 132 122 20 Discult Anguadiy A 132 132 122 20 Discult Anguadiy A 132 <	-		. ,					
Model POHY-P1202KNLA POHY-P1202KNLA POHY-P1202KNLA POHY-P1202KNLA POHY-P1202KNLA POHY-P1202KNLA POHY-P1202KNLA POHY-P120XNLA POHY-P120	Model POHY-P12020AUA POHY-P12020AUA POHY-P12020AUA POHY-P12020AUA Materian Overcarrent Protection A 13 13 13 12 Materian Overcarrent Protection A 22 22 20 22 20 Circulating water Other overcarrent Protection A 22 23 20 Circulating water Other overcarrent Protection A 22 24 25 24		Gas hihe	иі. (пи п)	1	1-0/0 (41.20) Brazed			
Minimum Oversamme Protection A 13 12 Direct Mangendy A 13 12 Direct Mangendy A 22 22 20 Direct Mangendy Mater Rover rate Chin 23.4 15.2 </td <td>Minimum Concurrent Protection A 13 13 12 Circulating water Water flow rate Gin 22 20 20 20 Circulating water Water flow rate Gin 24 2</td> <td></td> <td></td> <td></td> <td>PQHY-P120ZKMU-A</td> <td>PQHY-P120ZKMU-A</td> <td>PQHY-P96ZKMU-A</td>	Minimum Concurrent Protection A 13 13 12 Circulating water Water flow rate Gin 22 20 20 20 Circulating water Water flow rate Gin 24 2				PQHY-P120ZKMU-A	PQHY-P120ZKMU-A	PQHY-P96ZKMU-A		
Maintam Overcurrent Privatetion A 22 22 22 20 Circulating water Water flow rate On On Statuter Statuter 25.4 + 25.4 + 25.2 + 15.22 + 15.	Maximum Overcurrent Primetolin A 22 22 23 30 Circulating water Water flow rate On 1.522 + 1.522 + 1.522 .524 + 1.52 + 1.522 .524 + 1.52 + 1.522 .524 + 1.54 + 1.54 .534 + 1.54 + 1.54 .534 + 1.54 + 1.54 .534 + 1.54 + 1.54 .536 + 1.522 + 1.522 .524 + 1.54 + 1.54 .536 + 1.522 + 1.522 .534 + 1.54 .536 + 1.522 + 1.522 .534 + 1.54 .536 + 1.522 + 1.522 .534 + 1.54 .536 + 1.52 + 1.522 .534 + 1.54 .536 + 1.52 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.54 .536 + 1.522 .534 + 1.52 .534 + 1.52 .534 + 1.54 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536 + 1.522 .536		ity	А					
Series (amin minimized in the series of the series and series of the series of the series of the series o	Sime term Comparison 25.4 + 25.4 + 25.4 Image: Sime term Sime term Sime term Sime term Pressure drop pii 3.48 3.48 3.48 Operating volume range Comparison 1,185 + 1,185 + 1,28		·)						
Image: Size -	Immini 5.76 + 5.76 + 5.76 Immini 96 - 96 + 66 3.4 + 3.4 + 3.4 3.44 Pressure drop jail Immini 2.4 Operating volume runge Gimming Grammagion 1.189 + 1.181 + 118 + 118 + 113 + 7 + 3.7 Grammagion 1.189 + 1.181 + 188 + 138 + 137 + 3.17 A + 3.4 + 3.4 + 3.4 2.4 Comming Gimming Manufactum A - 6.4 + 5.4 + 7.2 + 7.2 + 7.2 Manufactum A CAR Works, MITSUBISH ELECTRIC A CAR Works, MITSUBISH ELECTRIC Manufactum COORDINATION COORDINATION COORDINATION Moder acuity Not + 7.7 7.7 6.0 Case heater WW 7.7 7.7 7.7 6.0 Case heater WW 7	Circulating water	Water flow rate						
Limin 09 + 98 + 96 cmin 3.48 3.48 3.48 Pressure drop pil 3.48 3.48 3.48 Operating volume range Gin 1.99 + 11.89 + 11.792 + 1.002	Limit Bit 9 es 1 e B Pressure drop pil 3.48 3.48 Operating volume range GR 1.189 + 1.189 + 1.189 + 1.302 + 1.302 1.189 + 1.189 + 1.189 + 1.302 + 1.302 Compressor Type x Quantity Tropediate compressor x1 1.189 + 1.189 + 1.189 + 1.180 + 1.302 + 1.302 1.189 + 1.189 + 1.189 + 1.180 + 1.302 + 1.302 Compressor Type x Quantity Tropediate compressor x1 Invote could interaction compressor x1 Interaction could interaction count interaction could interaction count interaction could inter				1				
dm 3.4 + 3.4 3.4 Pressure APB 3.48 2.4 3.48 2.4 Operating volume range G Imm again 11.89 + 11.98 + 11.98 - 11.902 + 1.902 + 1.902 1.00 Compressor Type x Quantity Inverter scroll hermetic compressor x1 String method CoRP Order MISUBISH ELECTION CASR Works,	Image: control of the second secon				_				
Pressure drop pill 3.48 3.48 3.48 Operating volume range (Gn (Gn 1,189 + 1,189 + 1,192 + 1,90	Pressure drop psi 3.48				-				
MPa 24 24 24 Operating volume range (a) transmig volume range (b) transmig volume range (c) transmig volume range (c	Image: Constraint of the second sec		Dressure dren		2.49	-	2.40		
Operating volume range (mm rgm) m/h (1.89 + 1.98 - 1.19 - 1.102 + 1.022 + 1.002 18 + 1.83 + 1.83 - 13.7 + 31.7 + 31.7 4.5 + 4.5 + 4.5 + 4.5 - 7.2 + 7.2	Operating volume range (m ²) m ² /m ² /m 1,189 + 11,89 + 11,89 + 11,79 + 11,7 + 18 + 18,8 + 11,7 + 11,7 + 31,7 + 4,5 + 4,5 + 2,7 + 2,7 + 2,7 + 2,7 + 7,2 + 4,5 + 4,5 + 2,7 + 2,7 + 2,7 + 7,2 + 4,5 + 4,5 + 2,7 + 7,2 + 7,2 + 7,2 + 7,7 + 7,		Pressure drop						
Image Image 19.8 + 19.8 + 19.8 + 19.8 + 17.9 + 17.9 + 31.7 Compressor Type x Quantity Inverter scoll hermetic compressor x 1 Inverter scoll hermetic compressor x 1 Manufacture ACRAW Wrsk, MITSUBISHIELECTRIC CORPORATION. ACRAW Norks, MITSUBISHIELECTRIC CORPORATION.	Imm gmm 19.8 + 18.8 + 19.8 - 37.7 + 31.7 + 31.7 Compressor Type x Quantity Inverter scroll nermetic compressor x 1 Inverter scroll nermetic compressor x 1 Manufacture ACR Works, MTSUBISH ELECTRIC CORPORATION ACRW Vorks, MTSUBISH ELECTRIC CORPORATION Inverter Inverter Starting method Inverter Inverter Inverter Inverter Case header KW 7.7 7.7 6.0 Case header KW - - - Case header KW - - - - Case header KW - - - - - Case header KW -<		Operating volume range						
Image: compressor Type x Cumpressor x 1 <	Imm 4.5 + 4.5 + 4.5 + 7.2 + 7.2 + 7.2 + 7.2 Compressor Type X Cunitly Inverter scoll hemetic compressor X I [metter scoll hemetic compressor X] [metter scoll hemetic scole hemetic hemotic hemotic hemetic hemotic hemotic hemotic hemotic hemotic hemotic hemotichemitic hemetic hemotic hemotichemit hemotichemitic hemotic hemo		oporating rolanio rango		-				
Manufacture AC&R Works, MTSUBISH ELECTRIC AC AT A <th< td=""><td>Manufacture AC&R Works. MTSUBSHI ELECTRIC Starting method AC&R Works. MTSUBSHI ELECTRIC AC&R Works. MTSUBSHI ELECTRIC Starting method AC&R Works. MTSUBSHI ELECTRIC CORPORATION AC&R Works. MTSUBSHI ELECTRIC Method rought AC A</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Manufacture AC&R Works. MTSUBSHI ELECTRIC Starting method AC&R Works. MTSUBSHI ELECTRIC AC&R Works. MTSUBSHI ELECTRIC Starting method AC&R Works. MTSUBSHI ELECTRIC CORPORATION AC&R Works. MTSUBSHI ELECTRIC Method rought AC A								
Instruction CORPORATION CORPORATION CORPORATION CORPORATION Starting method Inverter Inverter Inverter Inverter Case healer KW - - - Lubricant MRL32 MRL32 MRL32 MRL32 External finish Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets External finish 43-5/16 X 34-11/16 X 21-11/16 X 21-1	Initial CORPORTION CORPORTION CORPORTION CORPORTION Stating method Inveter Inveter Inveter Inveter Case heater KW - - - Case heater KW - - - External finish Galvanized steel sheets Fild pressure sensor, High pressure sensor, H	Compressor	Type x Quantity	•	Inverter scroll hermetic compressor x 1		Inverter scroll hermetic compressor x 2		
Starting method CORPORATION CORPORATION CORPORATION CORPORATION Motor output KW 7.7 7.7 8.0 Case heater KW - - - Lubricant MEL32 MEL32 MEL32 External finish Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets External finish Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets External finish Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets Frotection devices High pressure sensor, High pressure sensor	Starting method CORPORATION CORPORATION CORPORATION CORPORATION Morio output KW 7.7 7.7 6.0 Case heater KW -<		Manufacture		AC&R Works, MITSUBISHI ELECTRIC	AC&R Works, MITSUBISHI ELECTRIC	AC&R Works, MITSUBISHI ELECTRIC		
Motor output NW 7.7 7.7 6.0 Case heater NW - <td< td=""><td>Motor output KW 7.7 7.7 0.0 Case heater KW - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<></td></td<>	Motor output KW 7.7 7.7 0.0 Case heater KW - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Case heater WW . . External finish Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets External dimension H x W x D In. 43-5/16 x 34-11/16 x 21-11/16 x 21-1	Case heater Ivv			134/					
Lubricant MEL32 MEL32 MEL32 External finith Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets External finith 1.00 x 800 x 550 1.00 x 800 x 550 1.00 x 800 x 550 Protection devices High pressure sensor, High pressure sensore sensor, High pressure sensore sensor, High pres	Lubricant MEL32 MEL32 MEL32 MEL32 External finish Galvanized steel sheets Salvish at 4.15 MP GiO 1ab Salvish 4.15 MP GiO 1ab Salvish 4.15 MP GiO 1ab								
External dimension H x W x D Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets External dimension H x W x D in 4.55/16 x 3.411/16 x 21.11/16	External dimension H x W x D Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets Galvanized steel sheets External dimension H x W x D in 4.95/16 x 3-11/16 x 21-11/16 43-5/16 x 3-11/16 x 21-11/16 High pressure sensor.			KVV					
External dimension H x W x D In 49-5/16 x 34-11/16 24-5/16 x 34-11/16 25-5/16 Protection Switch at 4.15 Min 16/01 passure sensor. High pressure sensor. High p	External dimension H x W x D In 443-6/16 x 34-11/16 x 21-11/16 43-6/16 x 34-11/16 x 21-11/16 43-6/16 x 34-11/16 x 21-11/16 Protection devices High pressure protection High pressure sensor, High pressure for over-heat protection High pressure sensor, High pressure sensor, High pressure sensor, High pressure for over-heat protection Over-heat prot	External finish							
Protection devices High pressure protection High pressure sensor,	Protection devices High pressure protection High pressure sensor. High pressure sensor, Sensor, Cover-cheat protection, Over-cheat protection, Song, Song, Song, Song, Song, Song, Song, Song, Song,	External dimension H x	WxD	in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11/16 x 21-11/16		
Indecided extends Ingri processor production C switch at 4.15 MPa (601 ps) inverter circuit Switch at 4.15 MPa (601 ps) compressor Switch at 4.15 MPa (601 ps) inverter circuit Switch at 4.15 MPa (601 ps	Indextor before Inspire protection - switch at 4.15 MPa (601 ps) - switch at 4.15 MPa (601 ps) - switch at 4.15 MPa (601 ps) Inverter circuit Over-heat protection, Over-current pro- tection Over-heat protection, Over-current pro- lection Advertion Advertion Advertion Advertion Advertion Advertion Advertion Advertion Adveretion Advertion A			mm					
Inverter circuit Over-heat protection, Over-current pro- lection Over-heat protection, Over-current pro- lection Over-heat protection Over-heat protection Refrigerant Type x original charge R410A x 11 lbs +1 oz (5.0 kg) R410A x 11 lbs +1 oz (5.0 kg) R410A x 11 lbs +1 oz (5.0 kg) Vet weight Ibs (kg) 408 (185) 408 (185) 408 (185) Vet weight Ibs (kg) 408 (185) 408 (185) 1.32 Vet weight Ibs (kg) 408 (185) 408 (185) 1.32 Vet weight Ibs (kg) 408 (185) 408 (185) 2.0 Vet weight Ibs (kg) 408 (185) 408 (185) 2.0 Vet weight Ibs (kg) 408 (185) 408 (185) 2.0 Vet weight Ibs (kg) 408 (185) 408 (185) 2.0 Vet weight Ibs (kg) 408 (185) 408 (185) 2.0 Vet weight Ibs (kg) 408 (185) 408 (185) 2.0 Vet weight Ibs (kg) 2.0 2.0 2.0 Vet weight Ibs (kg) 2.0 </td <td>Inverter circuit Over-heat protection, Over-current pro- lection Over-heat protection, Over-current pro- lection Over-heat protection Over-heat protection Over-heat protection Refrigerant Type x original charge R410A x11 lbs +1 oz (50 kg) R410A x11 lbs +1 oz (50 kg)</td> <td>Protection devices</td> <td>High pressure protection</td> <td></td> <td></td> <td></td> <td>High pressure sensor, High pressure</td>	Inverter circuit Over-heat protection, Over-current pro- lection Over-heat protection, Over-current pro- lection Over-heat protection Over-heat protection Over-heat protection Refrigerant Type x original charge R410A x11 lbs +1 oz (50 kg)	Protection devices	High pressure protection				High pressure sensor, High pressure		
Index dual Letion Letion Letion Compresor Overheat protection Overheat protection Overheat protection Refrigerant Type x original charge R410A x 11 lbs + 1 oz (5.0 kg) R410A x 11 lbs + 1 oz (5.0 kg) R410A x 11 lbs + 1 oz (5.0 kg) Net weight Ibs (kg) 408 (185) 408 (185) 408 (185) Heat exchanger Plate type plate type plate type plate type Water volume in plate G 1.32 1.32 1.32 Pipe between unit and Liquid pipe in. (mm) 1/2 (12.7) Brazed 1/2	Index death Tection Concernant protection Over-heat protection Over-heat protection Refrigerant Type x original charge R410A x 11 lbs + 1 oz (5.0 kg)		i lavanta i ii						
Compressor Over-heat protection Over-heat protection Over-heat protection Refrigerant Type x original charge R410A x 11 lbs + 1 oz (5.0 kg) R410A x 11 lbs + 1 oz (5.0 kg) R410A x 11 lbs + 1 oz (5.0 kg) Vet weight Ibs (kg) 408 (185) 408 (185) 408 (185) 408 (185) Vet weight Ibs (kg) 408 (185) 408 (185) 408 (185) 408 (185) Vet volume in plate G 1.32 1.32 1.32 1.32 Vet or volume in plate G 1.32 1.32 1.32 2.0 Vet or volume in plate G 1.32 1.32 1.32 2.0	Compressor Over-heat protection Over-heat protection Over-heat protection Refrigerant Type x original charge R410A x 11 lbs + 1 oz (5.0 kg) R410A x 11 lbs +		Inverter circuit						
Control Control LEV and HIC circuit Net weight Ibs (kg) 408 (185) 408 (185) Net weight plate type plate type plate type Water volume in plate G 1.32 1.32 Water volume in plate G 2.0 2.0 2.0 Witer volume in plate G 1.2 1.2 1.2 1.2 1.2 2.0 </td <td>Control Lev Lev and HC circuit Lev and HC circuit Net weight Ibs (kg) 408 (185) 408 (185) 408 (185) 408 (185) Heat exchanger Ibs (kg) 132 1.32 1.32 1.32 Water volume in plate G 1.32 1.32 1.32 1.32 Water pressure Max. psi 290 290 20</td> <td></td> <td>Compressor</td> <td></td> <td></td> <td></td> <td colspan="3"></td>	Control Lev Lev and HC circuit Lev and HC circuit Net weight Ibs (kg) 408 (185) 408 (185) 408 (185) 408 (185) Heat exchanger Ibs (kg) 132 1.32 1.32 1.32 Water volume in plate G 1.32 1.32 1.32 1.32 Water pressure Max. psi 290 290 20		Compressor						
Net weight Ibs (kg) 408 (185) 408 (185) 408 (185) Heat exchanger plate type plate type plate type plate type Water volume in plate G 1.32 1.32 1.32 Water pressure Max. psi 290 290 200 200 HIC circuit (HIC: Heat Inter-Changer) Copper pipe, tube-in-tube structure Copper pipe, tube-in-t	Net weight Ibs (kg) 408 (185) 408 (185) 408 (185) Heat exchanger plate type plate type plate type plate type Water volume in plate G 1.32 1.32 1.32 I 5.0 5.0 5.0 5.0 Water pressure Max. psi 290 290 290 20 2.0	Refrigerant	Type x original charge		R410A x 11 lbs + 1 oz (5.0 kg)		R410A x 11 lbs + 1 oz (5.0 kg)		
Heat exchanger Image: Constraint of the second	Heat exchanger Image: Construct of the state		Control	1					
Water volume in plate G 1.32 1.32 1.32 Water volume in plate I 5.0 5.0 5.0 Water pressure Max. psi 290 290 20 MPa 2.0 2.0 2.0 2.0 Pipe between unit and Liquid pipe in. (mm) 1/2 (12.7) Brazed 1/2 (12.7) Brazed 1/2 (12.7) Brazed Orawing External KE94C823 KE94C823 KE94C823 KE94C823 Standard attachment Document KE94C823 KE94C823 KE94C823 KE94C823 Optional parts Document	Water volume in plate G 1.32 1.32 1.32 Water pressure Max. psi 290 290 290 290 HIC circuit (HIC: Heat Inter-Changer) Copper pipe, tube-in-tube structure Copper pipe, tube-in-			lbs (kg)			()		
Image: Note:	Image: Note:	Heat exchanger	Mater						
Water pressure Max. psi MPa 290 290 290 290 20 <	Water pressure Max. psi MPa 290 290 290 200		vvater volume in plate						
MPa 2.0 2.0 2.0 HIC circuit (HIC: Heat Inter-Changer) Copper pipe, tube-in-tube structure Copper pipe, tube-in-tube stubestere Copper pi	MPa 2.0 2.0 2.0 HIC circuit (HIC: Heat Inter-Changer) Copper pipe, tube-in-tube structure Copper pip		Water pressure Max						
HIC circuit (HIC: Heat Inter-Changer) Copper pipe, tube-in-tube structure Coppere	HIC circuit (HIC: Heat Inter-Changer) Copper pipe, tube-in-tube structure Copperi		Trate: probute max.						
Pipe between unit and distributor Liquid pipe in. (mm) 1/2 (12.7) Brazed 1/2 (12.7) Brazed 1/2 (12.7) Brazed Drawing External in. (mm) 7/8 (22.2) Brazed 7/8 (22.2)	Pipe between unit and distributor Liquid pipe in. (mm) 1/2 (12.7) Brazed 1/2 (12.7) Brazed 1/2 (12.7) Brazed Drawing External N/8 (22.2) Brazed 7/8 (22.2) Brazed 7/8 (22.2) Brazed 7/8 (22.2) Brazed Drawing External KE94C823 KE94C823 KE94C823 KE94C823 Standard attachment Document - - - Accessory Details refer to External Drw - Optional parts Heat Source Twinning kit: CMY-Y300CBK2 joint: CMY-Y102LS-G2, CMY-Y302S-G2, CMY-Y302S-G2 - Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall there of the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient relative humidity of the Heat Source Unit needs to be kept below 104*FD.B. (40*CD.B.) The Heat Source Unit should not be installed at outdoor. The Heat Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material around both water and refrigerant piping, follow the installation manual. Atoes: 11.00minal cooling conditions (Test conditions are based on AHRI 1230) Indicor: 81*FD.B./60*FW.B. (27*CD.B./)9*CW.B.), Water temperature: 86*F (30*C) Indoor: 81*FD.B./60*FW.B. (20*CD.B.), Water temperature: 66*F (20*C) Mit converter Stan	HIC circuit (HIC: Heat In	iter-Changer)	1					
distributor Gas pipe in. (mm) 7/8 (22.2) Brazed 7/8 (22.2) Brazed 7/8 (22.2) Brazed Drawing External KJ94C488 KE94C823 KE94C823 KE94C823 Standard attachment Document - - - - Optional parts Details refer to External Drw - - - - Optional parts Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall be refered to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104*FD.B. (40*CD.B.) - The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept the provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water a	distributor Gas pipe in. (mm) 7/8 (22.2) Brazed 7/8 (22.2) Brazed 7/8 (22.2) Brazed Drawing External KJ94C488 KE94C823 KE94C823 KE94C823 Standard attachment Document			in. (mm)					
Wiring KE94C823 KE94C823 KE94C823 Standard attachment Document -	Wiring KE94C823 KE94C823 KE94C823 Standard attachment Document -	•	<u> </u>			7/8 (22.2) Brazed			
Standard attachment Document Accessory Details refer to External Drw Optional parts Heat Source Twinning kit: CMY-Y300CBK2 joint: CMY-Y102LS-G2, CMY-Y302S-G2, CMY-Y302S-G2 Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall be re ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to the water inlet piping of the unit. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the uni operation and water circuit. Install the supplied insulation material around both water and refrigerant piping, follow the installation manual. Aotes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B. (20°CD.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) Unit converter BTU/h =kW x 3,412 cfm =m ³ /min x 35.31 lbs = kg/0.4536 *Above specification data is	Standard attachment Document - Accessory Details refer to External Drw Optional parts Heat Source Twinning kit: CMY-Y300CBK2 joint: CMY-Y102S-G2, CMY-Y102LS-G2, CMY-Y202S-G2, CMY-Y302S-G2 Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall the ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The Heat Source Unit needs to be kept below 80%. The Heat Source Unit shalled at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material around both water and refrigerant piping, follow the installation manual. Votes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B. (40°CD.B.), Water temperature: 86°F (30°C) Unit converter 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) Water temperature: 68°F (20°C) *Above specification data	Drawing							
Accessory Details refer to External Drw Optional parts Heat Source Twinning kit: CMY-Y300CBK2 joint: CMY-Y102LS-G2, CMY-Y102LS-G2, CMY-Y302S-G2 Header: CMY-Y104/108/01DC-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall be re ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to utdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./68°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) Unit converter BTU/h =kW x 3,412 cfm =m ³ /min x 35.31 lbs = kg/0.4536 *Above specification data is	Accessory Details refer to External Drw Optional parts Heat Source Twinning kit: CMY-Y300CBK2 join: CMY-Y102S-G2, CMY-Y102LS-G2, CMY-Y202S-G2, CMY-Y302S-G2 Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall b ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B. (20°CD.B.), Water temperature: 86°F (30°C) Unit converter 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) B*F (30°C) *Above specification da				KE94C823	KE94C823	KE94C823		
Optional parts Heat Source Twinning kit: CMY-Y300CBK2 joint: CMY-Y102SS-G2, CMY-Y102LS-G2, CMY-Y202S-G2, CMY-Y302S-G2 Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall be re ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	Optional parts Heat Source Twinning kit: CMY-Y300CBK2 joint: CMY-Y102LS-G2, CMY-Y202S-G2, CMY-Y302S-G2 Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall the ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	Standard attachment				- Details refer to Fix			
joint: CMY-Y102SS-G2, CMY-Y102LS-G2, CMY-Y202S-G2, CMY-Y302S-G2 Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall be referred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient relative humidity of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: Unit converter 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) BTU/h =kW x 3,412 cfm =m ³ /min x 35.31 lbs = kg/0.4536 *Above specification data is	joint: CMY-Y102SS-G2, CMY-Y102LS-G2, CMY-Y202S-G2, CMY-Y302S-G2 Header: CMY-Y104/108/0100C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall the ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104*FD.B. (40*CD.B.) The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	Ontional parts	Accessory		· · · · · · · · · · · · · · · · · · ·		X 2		
Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall be referred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient temperature of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (20°CD.B./) Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) BTU/h =kW x 3,412 cfm =m ³ /min x 35.31 lbs =kg/0.4536 *Above specification data is	Header: CMY-Y104/108/1010C-G Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall the ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient temperature of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./I)9°CW.B.), Water temperature: 86°F (30°C) Unit converter BTU/h =kW x 3,412 cfm =m³/min x 35.3 lbs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 66°F (20°C) *Above specification data *Above specification data	optional parts				•			
Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall be referred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Interse Unit converter Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 68°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) Unit converter	Remarks Details on foundation work, duct work, insulation work, electrical wiring, power source switch, and other items shall the ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material around both water and refrigerant piping, follow the installation manual. Notes: Unit converter 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Unit converter Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 80°F (20°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)				joint. Civit-11028		2, UNI-10020-02		
ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient temperature of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (60°CD.B.), Water temperature: 68°F (20°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	ferred to the Installation Manual. Due to continuing improvement, above specifications may be subject to change without notice. The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient temperature of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	Remarks			Details on foundation work, duct work in		purce switch, and other items shall be re-		
The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient temperature of the Heat Source Unit needs to be kept below 80%. The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water rinet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material round both water and refrigerant piping, follow the installation manual. Iotes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	The ambient temperature of the Heat Source Unit needs to be kept below 104°FD.B. (40°CD.B.) The ambient trelative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Iotes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification date:				ferred to the Installation Manual.	-			
The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Unit converter Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) BTU/h =kW x 3.3.1 Ibs =kg/0.4536 *Above specification data is	The ambient relative humidity of the Heat Source Unit needs to be kept below 80%. The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: Unit converter BTU/h = kW x 3,412 cfm = m³/min x 35.3 lbs = kg/0.4536 *Above specification dations *Above specification dations 								
The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 68°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	The Heat Source Unit should not be installed at outdoor. Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification da								
Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. I.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./60°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data is	Be sure to mount a strainer (more than 50 meshes) at the water inlet piping of the unit. Be sure to provide interlocking for the unit operation and water circuit. Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Votes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) Unit converter BTU/h = kW x 3,412 cfm = m³/min x 35.3 Ibs = kg/0.4536								
Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	Install the supplied insulation material to the unused drain-socket. When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: 1. Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification da				Be sure to mount a strainer (more than \$	50 meshes) at the water inlet piping of the	e unit.		
When installing insulation material around both water and refrigerant piping, follow the installation manual. Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)	When installing insulation material around both water and refrigerant piping, follow the installation manual. Notes: Unit converter Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) BTU/h =kW x 3,412 cfm =m ³ /min x 35.3 Ibs = kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data								
Votes: Unit converter 1.Nominal cooling conditions (Test conditions are based on AHRI 1230) BTU/h =kW x 3,412 Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) cfm =m ³ /min x 35.31 2.Nominal heating conditions (Test conditions are based on AHRI 1230) lbs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data is	Votes: Unit converter 1. Nominal cooling conditions (Test conditions are based on AHRI 1230) BTU/h =kW x 3,412 Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) cfm =m ³ /min x 35.3 2.Nominal heating conditions (Test conditions are based on AHRI 1230) lbs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data						w the installation manual		
I. Nominal cooling conditions (Test conditions are based on AHRI 1230) BTU/h =kW x 3,412 Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) cfm =m³/min x 35.31 I.Nominal heating conditions (Test conditions are based on AHRI 1230) lbs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data is	I. Nominal cooling conditions (Test conditions are based on AHRI 1230) BTU/h =kW x 3,412 Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) cfm =m³/min x 35.3 2.Nominal heating conditions (Test conditions are based on AHRI 1230) lbs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data								
Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) cfm =m³/min x 35.31 2.Nominal heating conditions (Test conditions are based on AHRI 1230) Ibs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data is	Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C) cfm =m³/min x 35.3 2.Nominal heating conditions (Test conditions are based on AHRI 1230) lbs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data								
2. Nominal heating conditions (1 est conditions are based on AHRI 1230) Ibs =kg/0.4536 Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data is	2.Nominal heating conditions (1 est conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification da						BTU/h =kW x 3,412		
Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification data is	Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C) *Above specification da								
*Above specification data is	*Above specification da		itions (Test conditions are be				$\frac{1}{100} = \frac{1}{100} $		
		2.Nominal heating condi			1230)		ibs -kg/0.4550		
	I subject to rounding varia	2.Nominal heating condi			1230)		-		

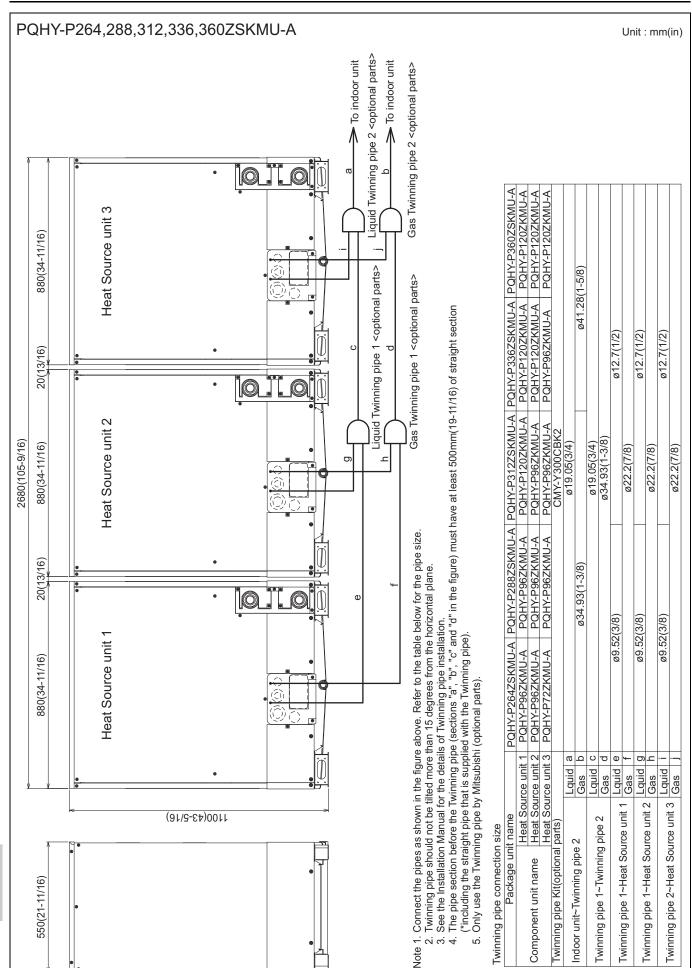
MITSUBISHI ELECTRIC CORPORATION

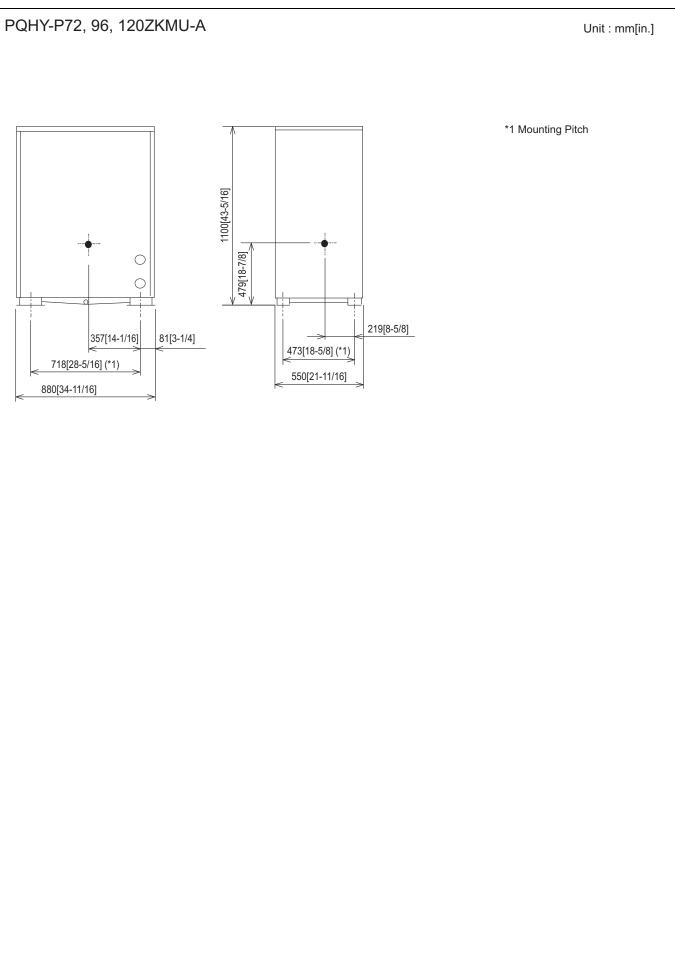

Heat Source	e Model				POHV-P36					
Heat Source Model Indoor Model				PQHY-P360ZSKMU-A Non-Ducted Ducted						
Power sourc	e			3-phase 3-wire 575 V ±10% 60 Hz						
Cooling capa	acity	*1	BTU/h	360,000						
(Nominal)		-	kW	105.5						
	()	Power input	kW	27.35						
	(575) (Rated)	Current input	A BTU/h	30.5						
	(Raleu)		kW	342,000 100.2						
		Power input	kW	26.39	10	J.2	2	5.45		
	(575)	Current input	A	29.4				28.3		
Temp. range	e of	Indoor	W.B.		59~75°F	15~24°C)				
cooling		Circulating water	۴		50~113°F	. ,				
Heating capa	acity	*2	-		405,000					
(Nominal)			kW	118.7						
	(575)	Power input Current input	kW A	<u>25.75</u> 28.7						
	(Rated)	Current input	BTU/h		387					
	(nated)		kW		11					
		Power input	kW	26.85			2	3.96		
	(575)	Current input	A	29.9			2	26.7		
Temp. range	e of	Indoor	D.B.		59~81°F	,				
heating		Circulating water	°F	50~95°F (10~35°C)						
Indoor unit		Total capacity			50~130% of heat s					
connectable		Model/Quantity	dD <^>		P06~P9					
Sound press Refrigerant	sure ievei (mea	asured in anechoic room) Liquid pipe	dB <a> in. (mm)		3/4 (19.0	0.0 5) Brazed				
piping diame	eter	Gas pipe	in. (mm)	1	1-5/8 (41.2	1				
Set Model			()	1	1 0/0 1					
Model				PQHY-P120ZKMU-A	PQHY-P12	0ZKMU-A		PQHY-P120ZKMU-A		
	rcuit Ampacity		А	13	13			13		
Maximum Ov	vercurrent Pro	tection	А	22	22			22		
Circulating w	vater	Water flow rate	G/h		1,522 + 1,5					
			G/min (gpm)	4	25.4 + 25					
			m ³ /h	4	5.76 + 5.					
			L/min cfm	4	96 + 9 24 + 2					
		Pressure drop	psi	3.48	3.4 + 3.4 + 3.4 3.48			3.48		
		r ressure drop	kPa	24	24			24		
		Operating volume range G/h					902			
			G/min (gpm)	19.8 + 19.8 + 19.8 ~ 31.7 + 31.7						
			m ³ /h	4.5 + 4.5 + 4.5 ~ 7.2 + 7.2 + 7.2						
Compressor		Type x Quantity		Inverter scroll hermetic compressor x 1 Inverter scroll hermetic compressor x 1 Inverter scroll hermetic compressor x 1						
		Manufacture						Norks, MITSUBISHI ELECTRIC		
				CORPORATION	CORPORATION		CORPORATION			
		Starting method Motor output kW		Inverter 7.7	Inverter 7.7		Inverter 7.7			
		Case heater	kW	-	-		-			
		Lubricant		MEL32	MEL32		MEL32			
External finis	sh			Galvanized steel sheets	Galvanized s			Galvanized steel sheets		
External dim	nension H x W	x D	in.	43-5/16 x 34-11/16 x 21-11/16	43-5/16 x 34-11	/16 x 21-11/16	43-	5/16 x 34-11/16 x 21-11/16		
			mm	1,100 x 880 x 550	1,100 x 8	80 x 550		1,100 x 880 x 550		
Protection de	evices	High pressure protection	ı	High pressure sensor, High pressure	High pressure sense			ressure sensor, High pressure		
				switch at 4.15 MPa (601 psi) Over-heat protection, Over-current pro-				vitch at 4.15 MPa (601 psi) eat protection, Over-current pro-		
		Inverter circuit		tection	tect		Over-ne	tection		
		Compressor		Over-heat protection	Over-heat			Over-heat protection		
Refrigerant		Type x original charge		R410A x 11 lbs + 1 oz (5.0 kg)	R410A x 11 lbs		R41	10A x 11 lbs + 1 oz (5.0 kg)		
		Control				HIC circuit				
Net weight Heat exchan	aor		lbs (kg)	408 (185)	408 (,		408 (185)		
ineal exchan	iyei	Water volume in plate	G	plate type 1.32	plate			plate type 1.32		
		water volume in plate	I	5.0	5.			5.0		
		Water pressure Max.	psi	290	29			290		
			MPa	2.0	2.			2.0		
	IC circuit (HIC: Heat Inter-Changer)			Copper pipe, tube-in-tube structure	-in-tube structure Copper pipe, tube-in-tube structure		Copper pipe, tube-in-tube structure			
Pipe betwee	en unit and	Liquid pipe	in. (mm)	1/2 (12.7) Brazed		1/2 (12.7) Brazed		1/2 (12.7) Brazed		
distributor		Gas pipe	in. (mm)	7/8 (22.2) Brazed		7/8 (22.2) Brazed		7/8 (22.2) Brazed		
Drawing		External				KJ94G488		1/20/2020		
Otor de la la	a abur f	Wiring		KE94C823	KE94C823			KE94C823		
Standard atta	achment	Document			Dataila rafa-ti	- External Dr.:				
Optional part	ts	Accessory		1	Details refer to Heat Source Twinning		(2			
Spaonal pan					SS-G2, CMY-Y102LS	•		/302S-G2		
					Header: CMY-Y1		, 1			
Remarks				Details on foundation work, duct work, in ferred to the Installation Manual. Due to continuing improvement, above s The ambient temperature of the Heat So The ambient relative humidity of the Hea The Heat Source Unit should not be insi Be sure to mount a strainer (more than Be sure to provide interlocking for the u	specifications may be ource Unit needs to be at Source Unit needs talled at outdoor. 50 meshes) at the wa nit operation and wate	subject to change w kept below 104°FE to be kept below 80° ter inlet piping of the or circuit.	vithout not).B. (40°C %.	tice.		
				Install the supplied insulation material to	the unused drain-so	:ket.	. 41-			
				When installing insulation material aroun	nd both water and refi	igerant piping, follow	v the insta	allation manual.		
Notes:								Unit converter		
1.Nominal co Indoor: 81°	oling condition	ns (Test conditions are ba B. (27°CD.B./19°CW.B.),	sed on AHRI	1230) ature: 86°E (30°C)				BTU/h =kW x 3,412 cfm =m ³ /min x 35.31		


Nominal cooling conditions (Test conditions are based on AHRI 1230) Indoor: 81°FD.B./66°FW.B. (27°CD.B./19°CW.B.), Water temperature: 86°F (30°C)
 Nominal heating conditions (Test conditions are based on AHRI 1230) Indoor: 68°FD.B. (20°CD.B.), Water temperature: 68°F (20°C)

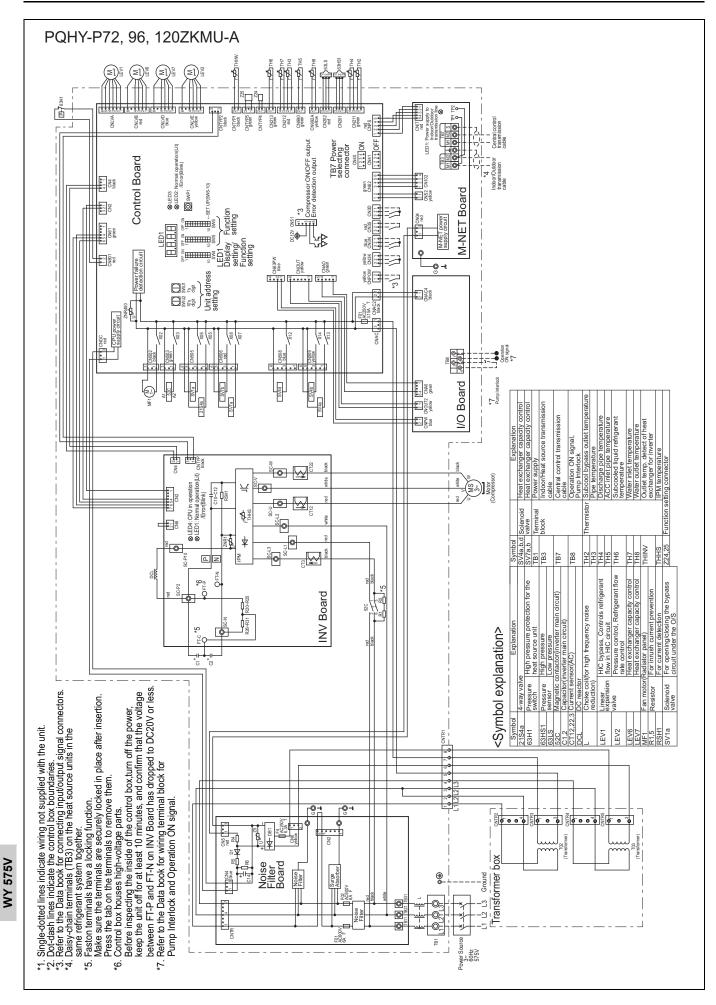
=m³/min x 35.31

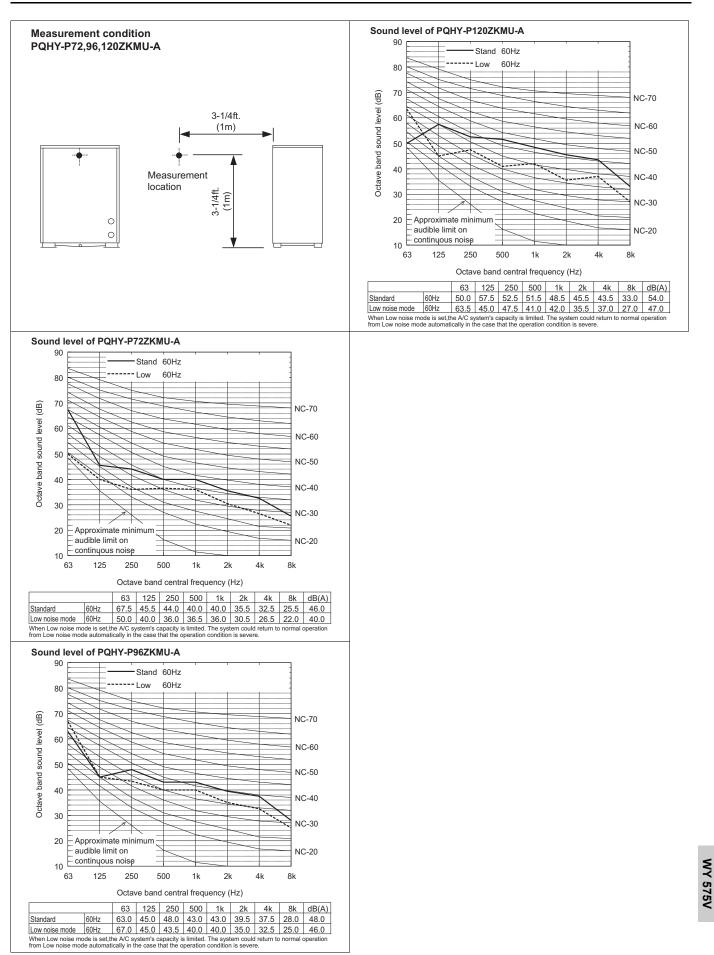
cfm


lbs

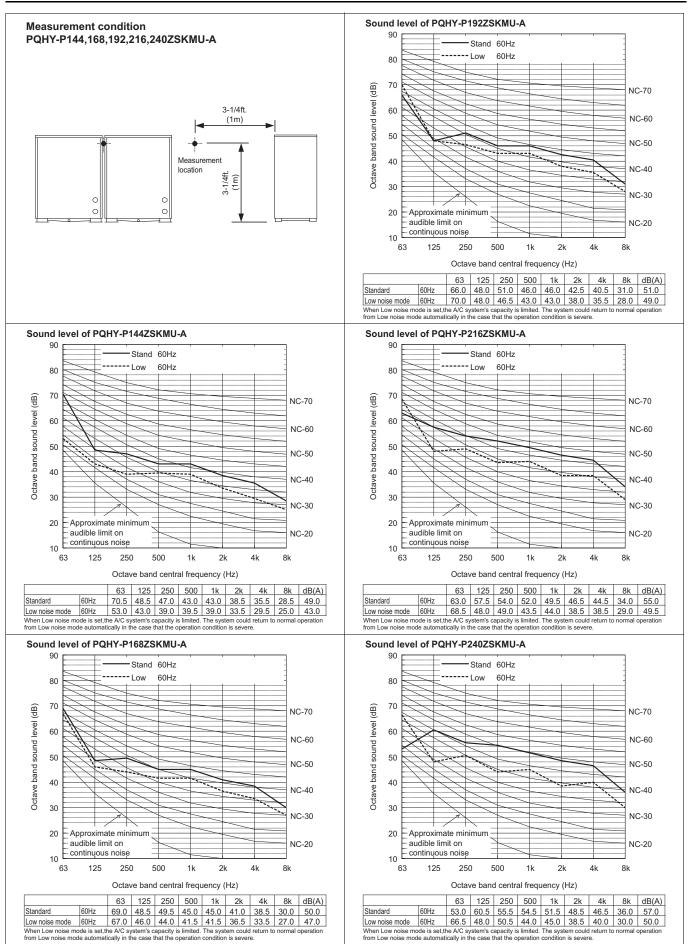


MEE15K058


2. EXTERNAL DIMENSIONS

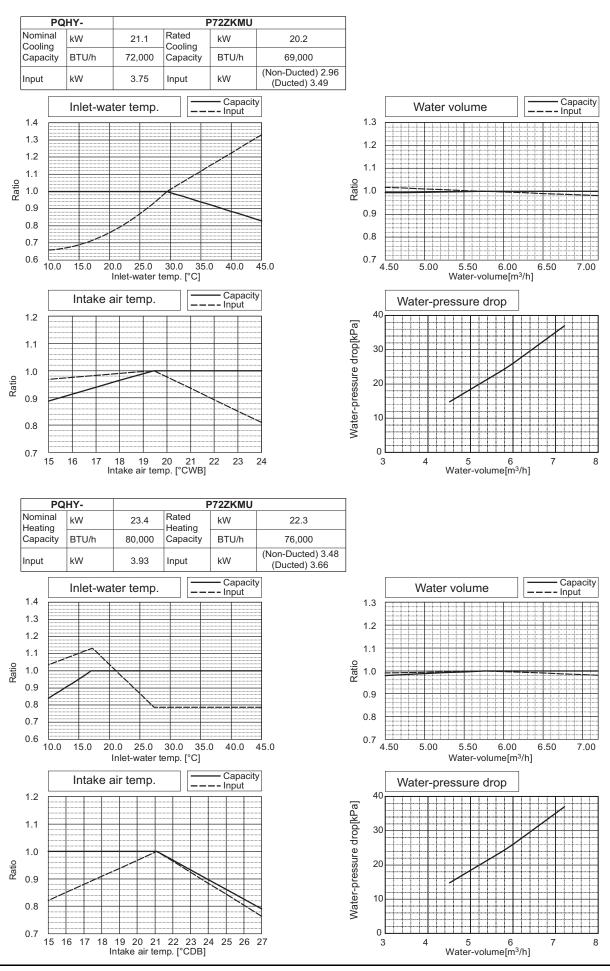


U11 2nd

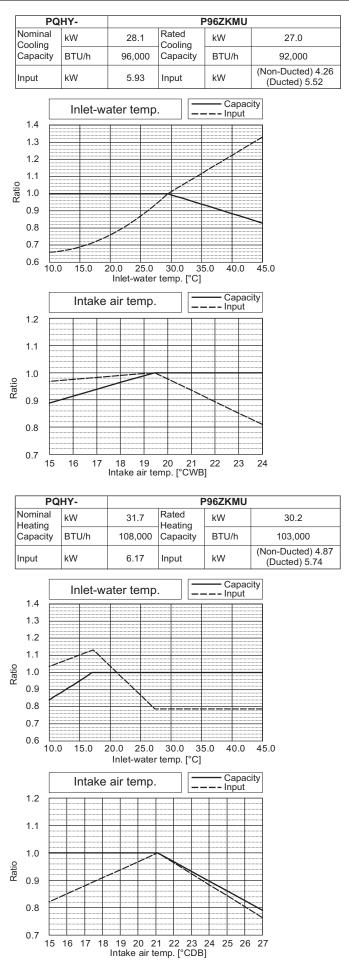

4. ELECTRICAL WIRING DIAGRAMS

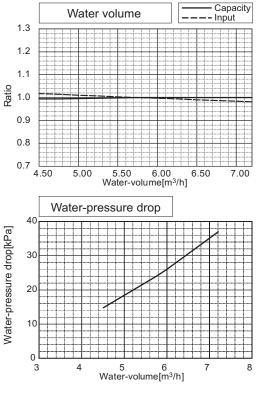

5. SOUND LEVELS

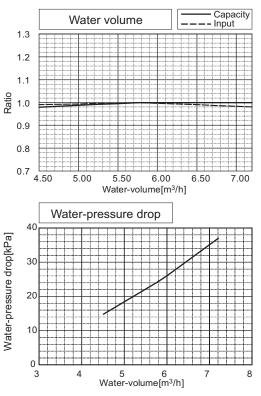
5. SOUND LEVELS

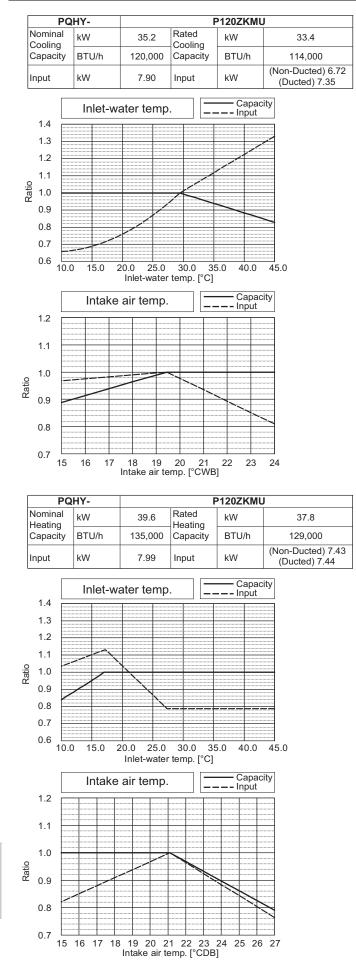


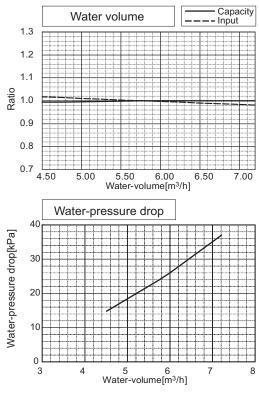
5. SOUND LEVELS

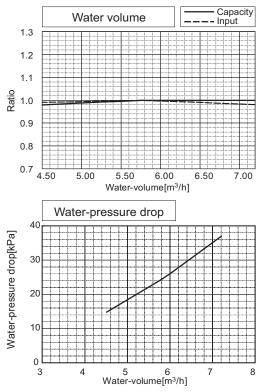

6-1. Correction by temperature

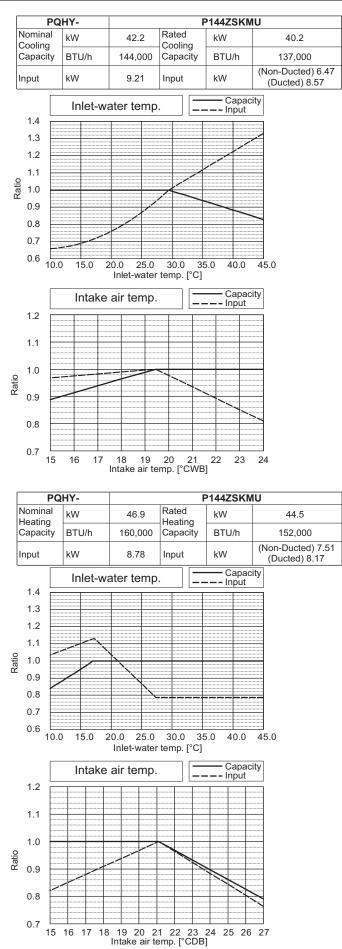

CITY MULTI could have various capacities at different designing temperatures. Using the nominal cooling/heating capacity values and the ratios below, the capacity can be found for various temperatures.

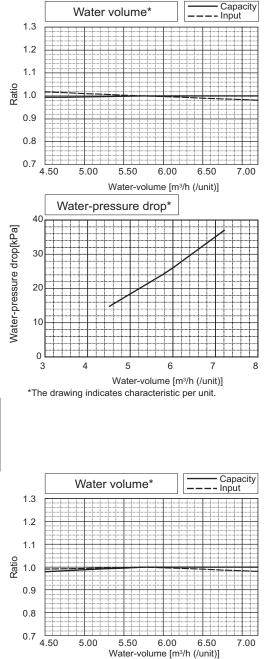


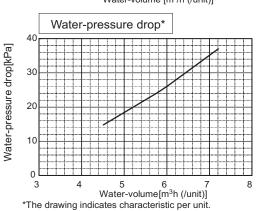


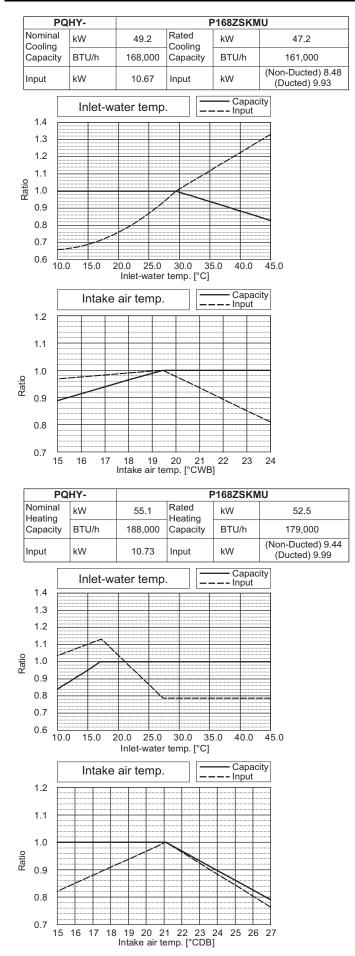


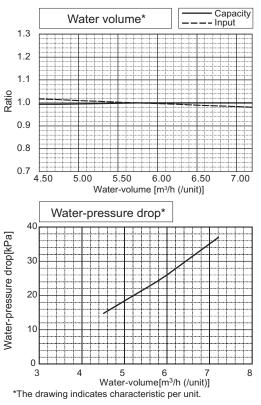


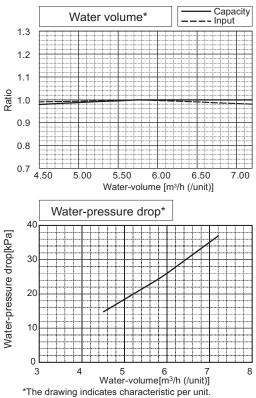


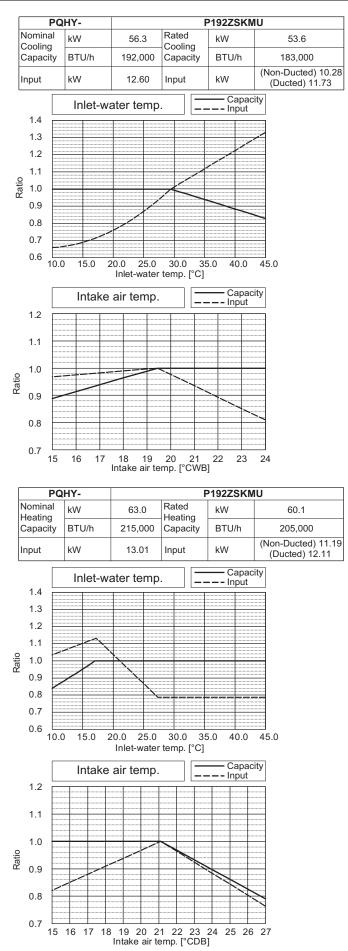


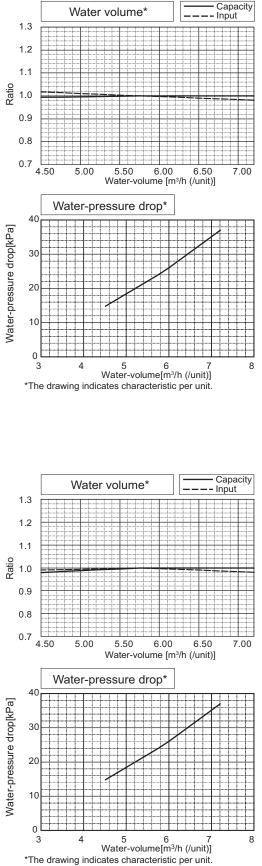


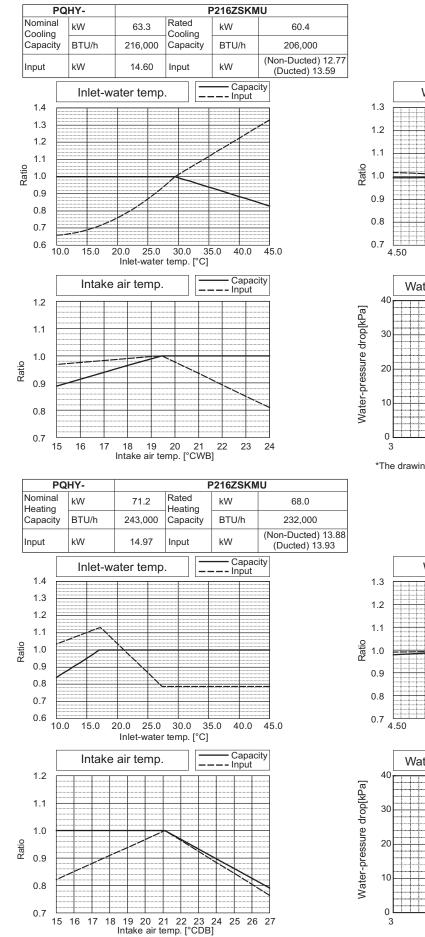


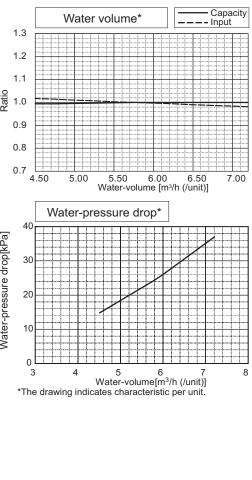


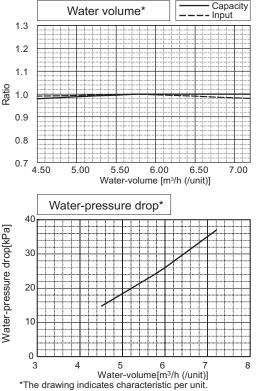


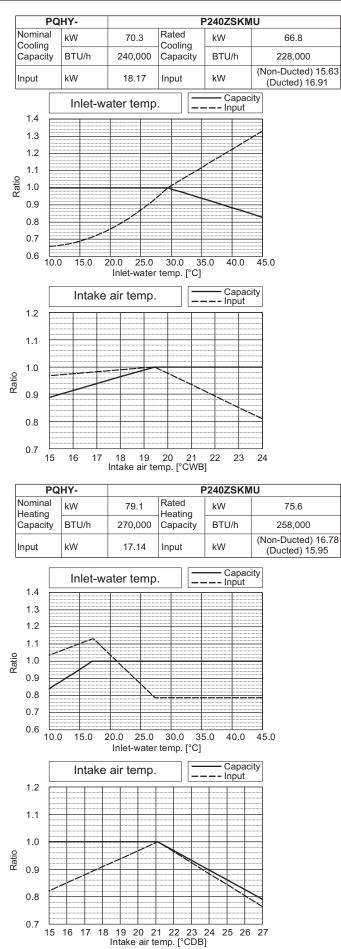


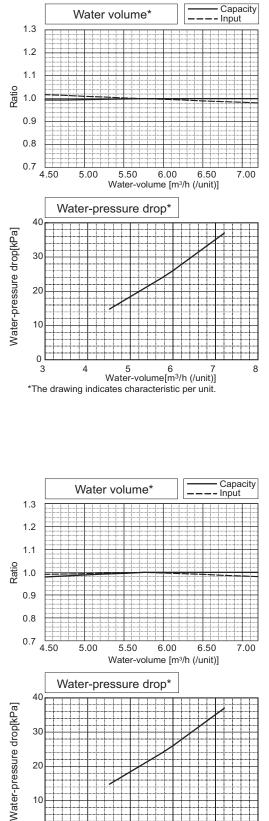


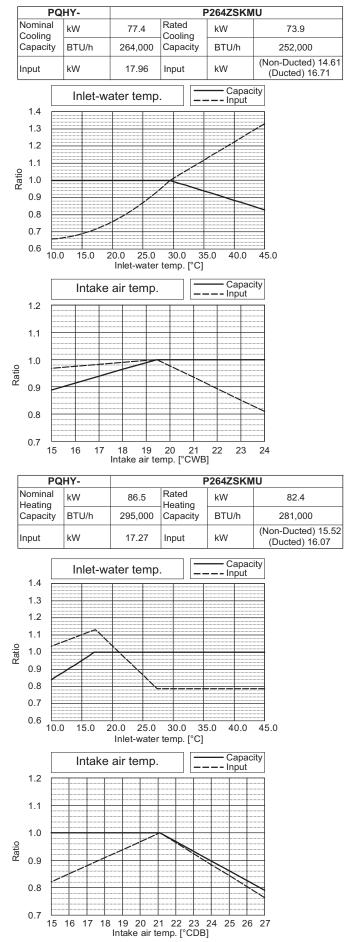


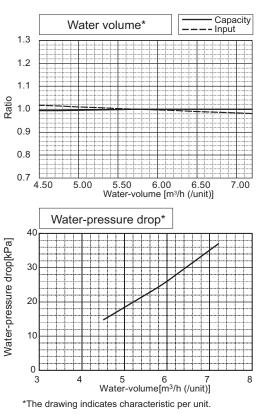


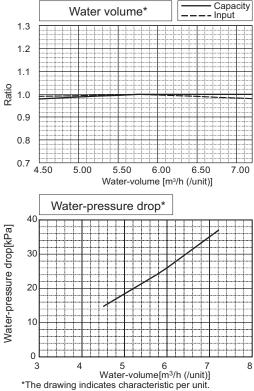


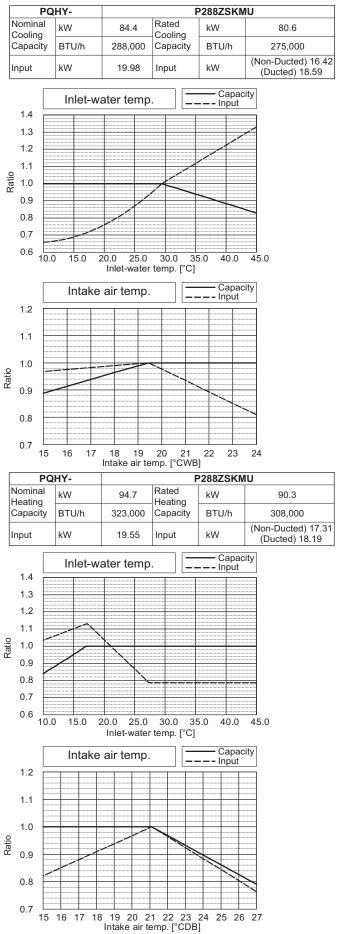

U11 2nd

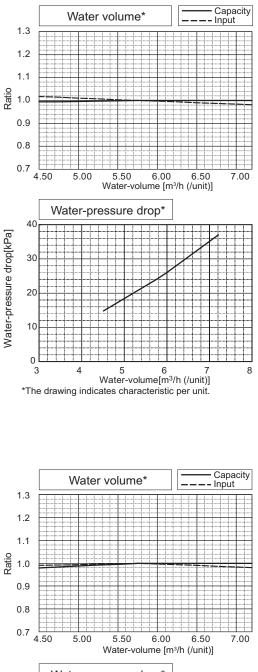


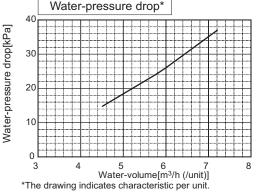


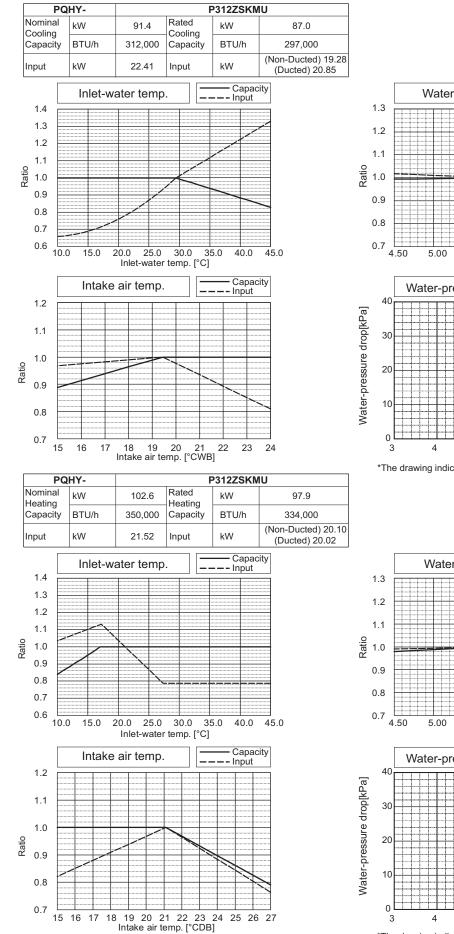


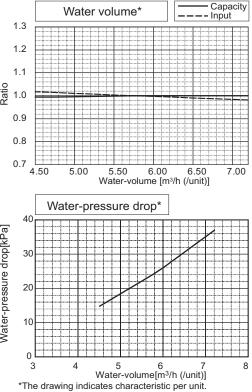

3 4 5 6 7 Water-volume[m³/h (/unit)] *The drawing indicates characteristic per unit.

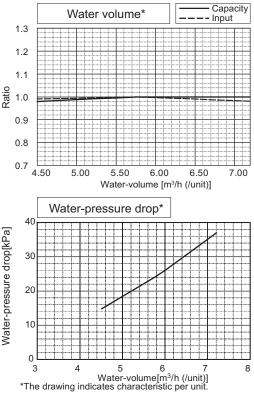

0

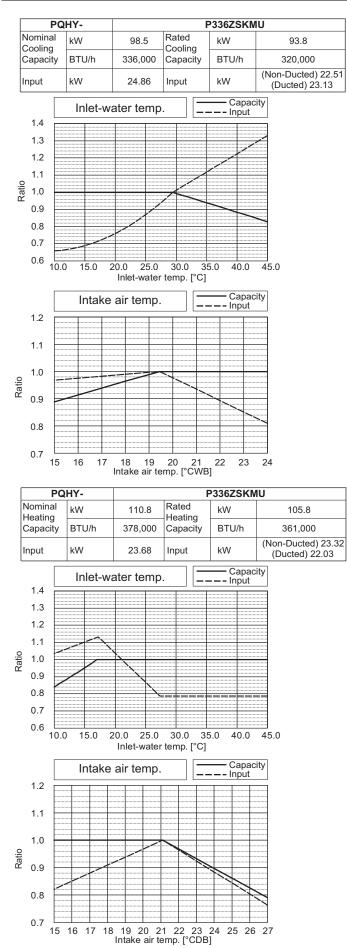

8

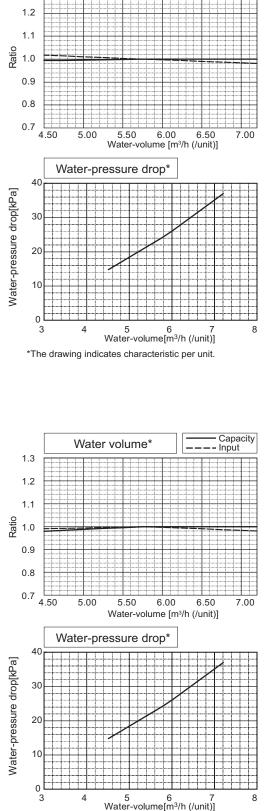


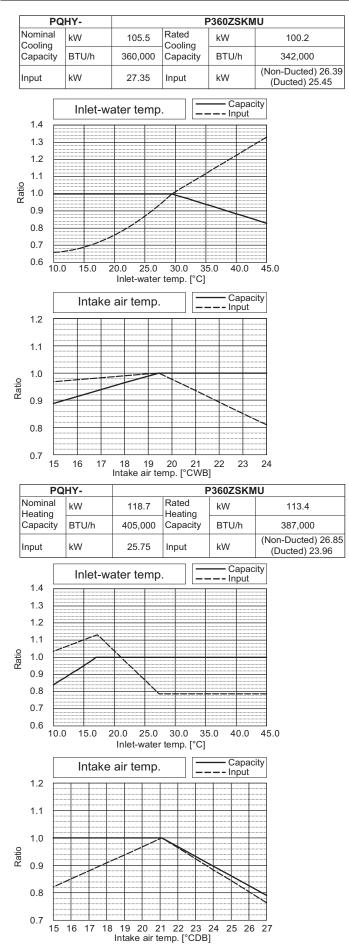


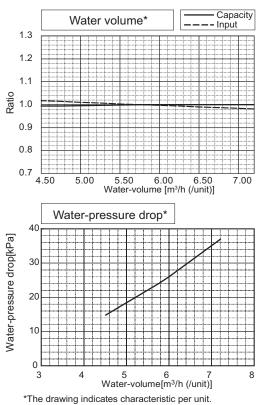


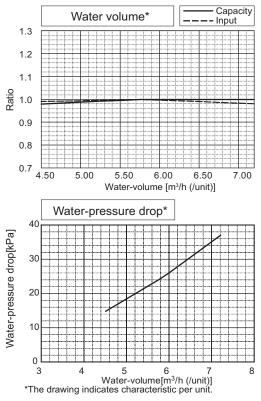






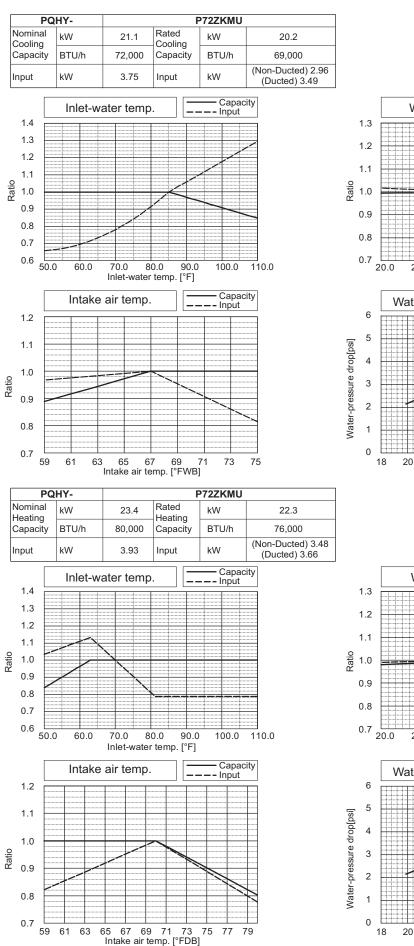

*The drawing indicates characteristic per unit

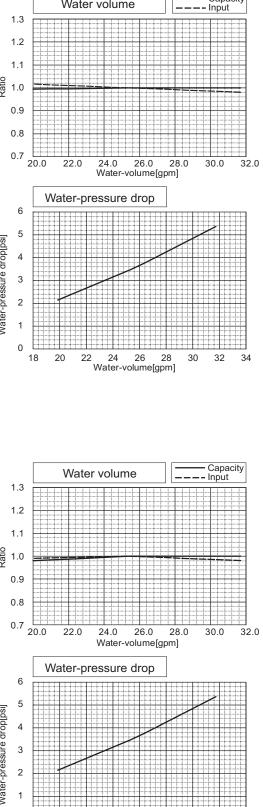

Water volume³


1.3

Capacity

Input





Capacity

Water volume

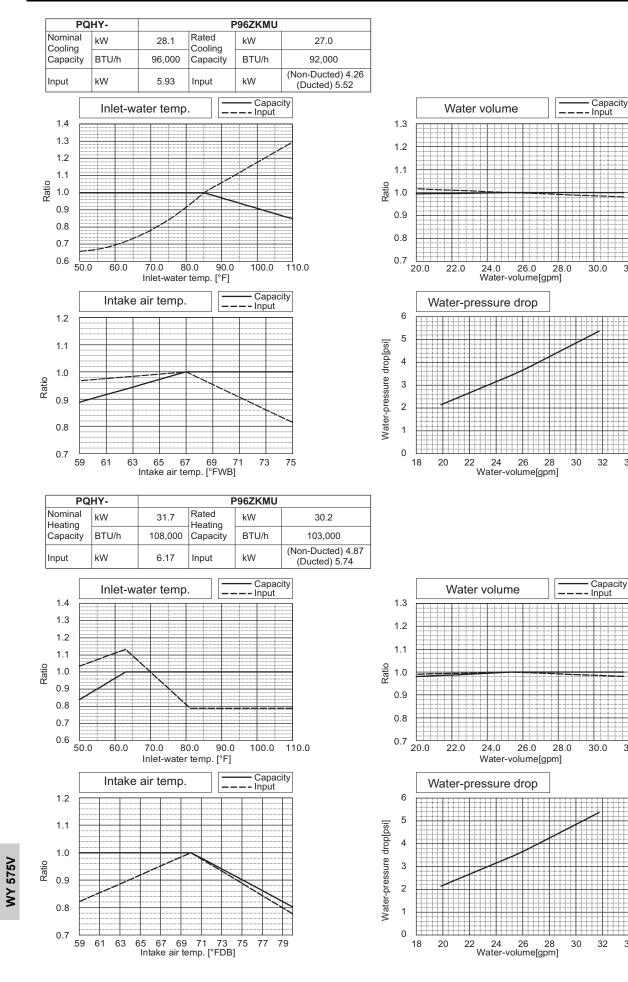
22 24 26 28 30 32 34

Water-volume[gpm]

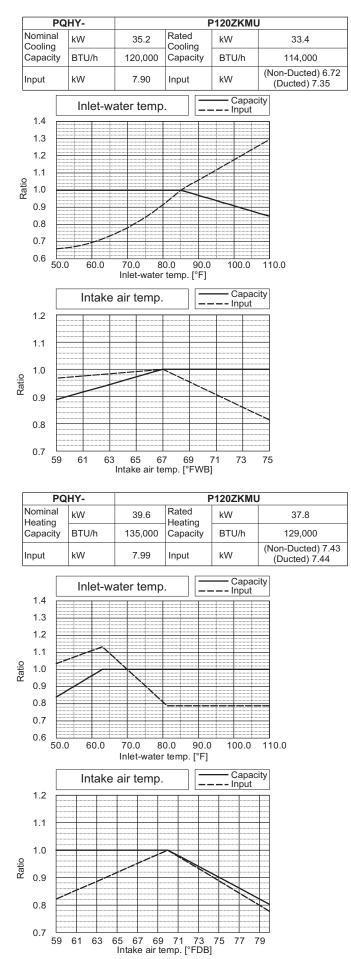
30.0

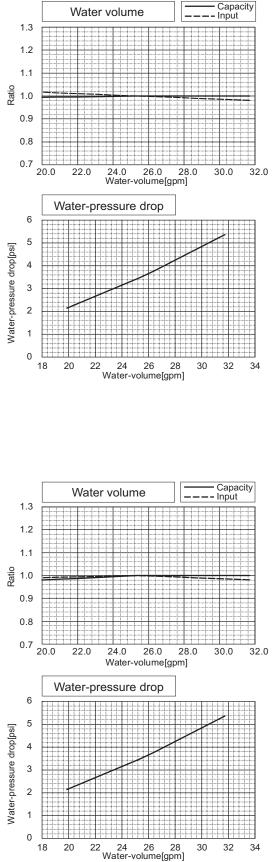
32 34

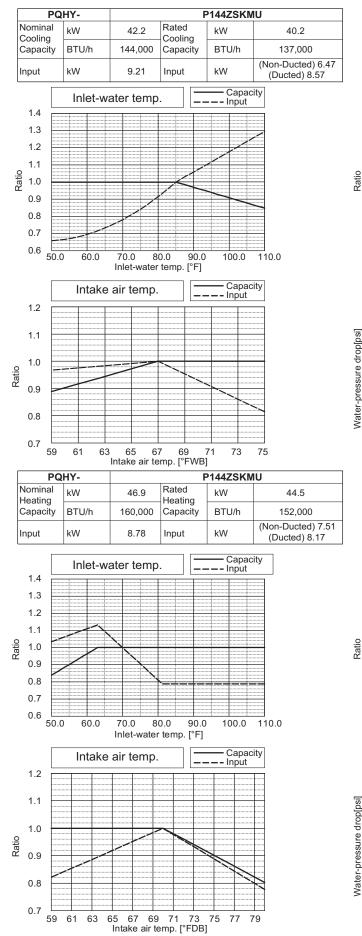
Capacity

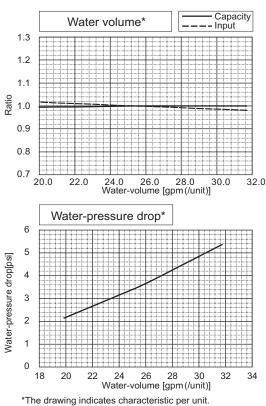

– Input

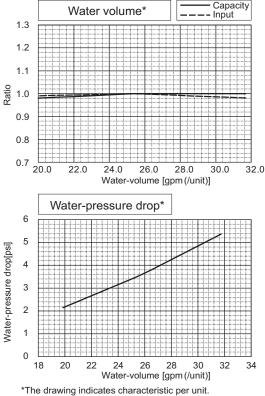
30.0

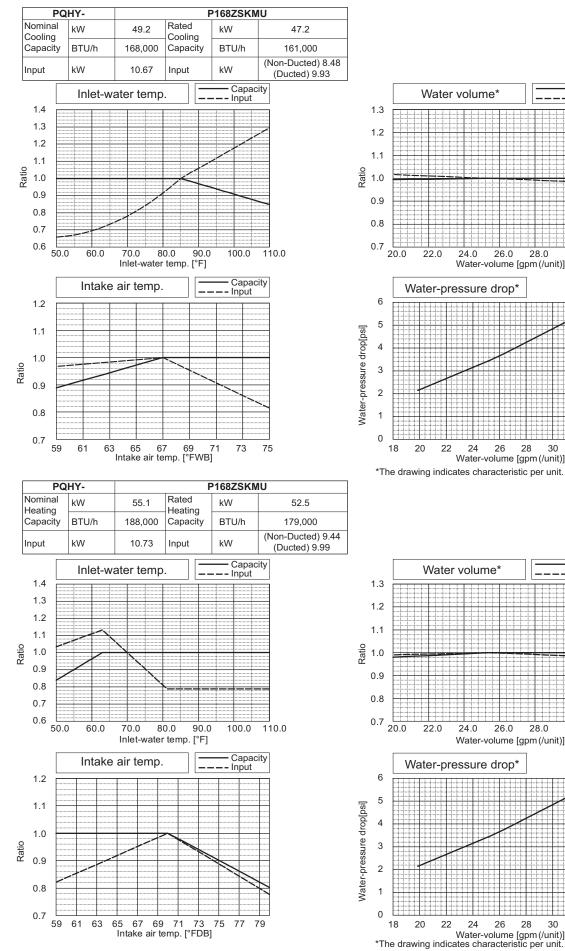

32 34

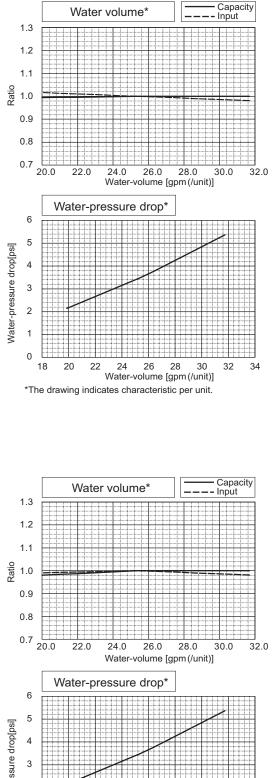

32.0

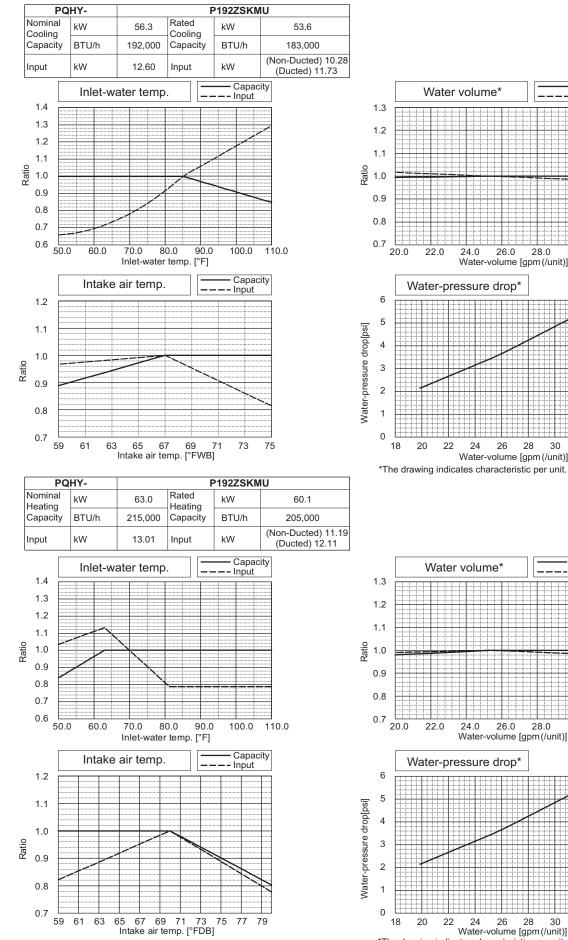

32.0

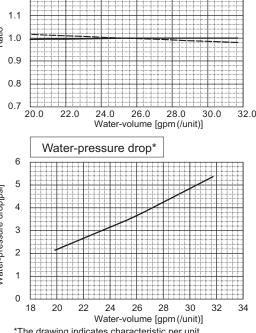


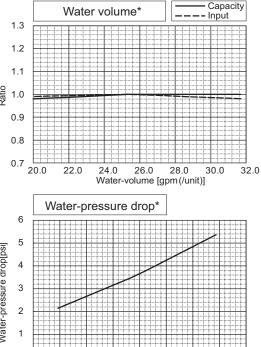










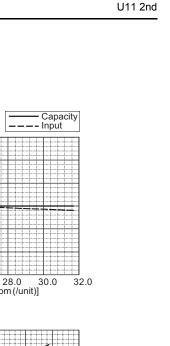

 Capacity

- Input

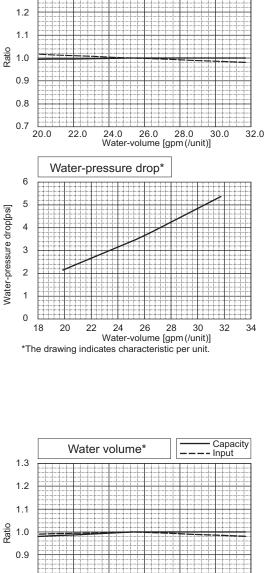
*The drawing indicates characteristic per unit.

28 30 34

32

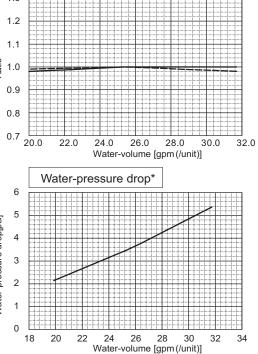


P216ZSKMU


Rated

PQHY-

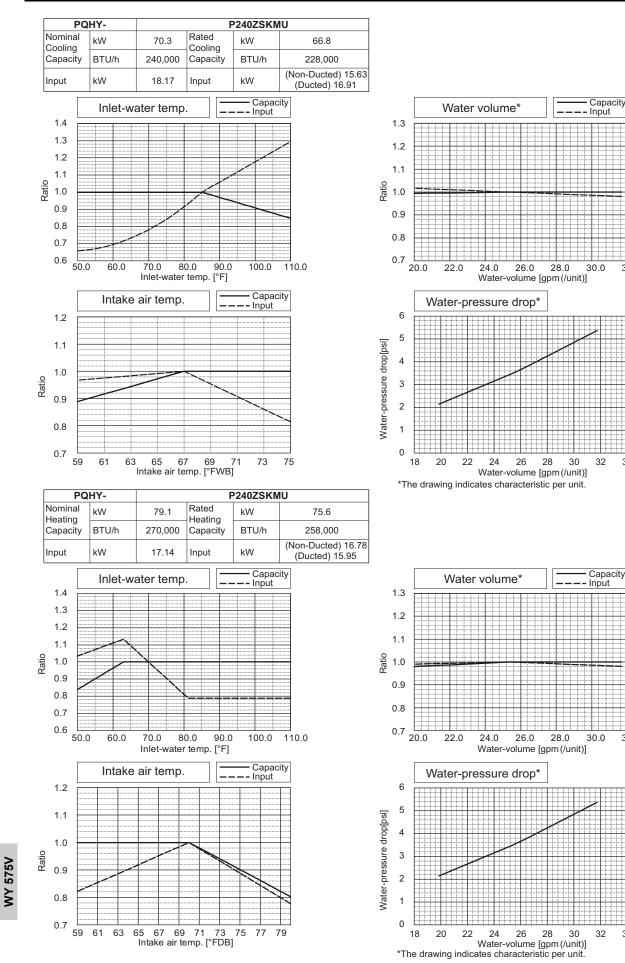
Nominal



Water volume*

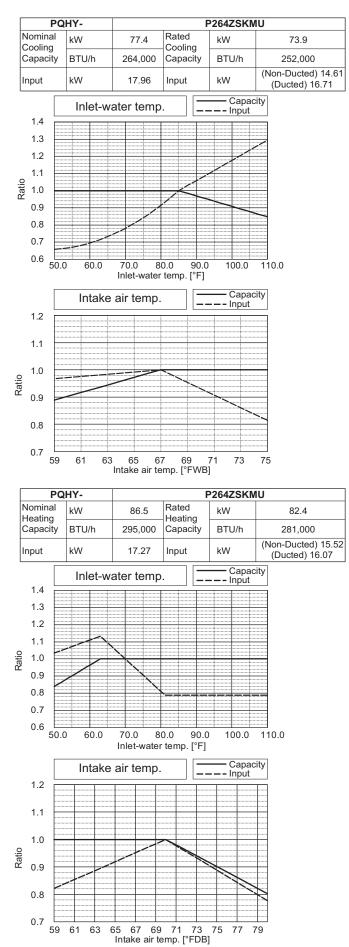
1.3

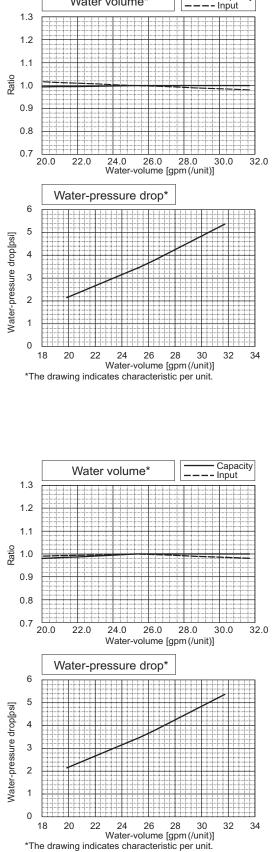
*The drawing indicates characteristic per unit.


Capacity

32.0

32 34

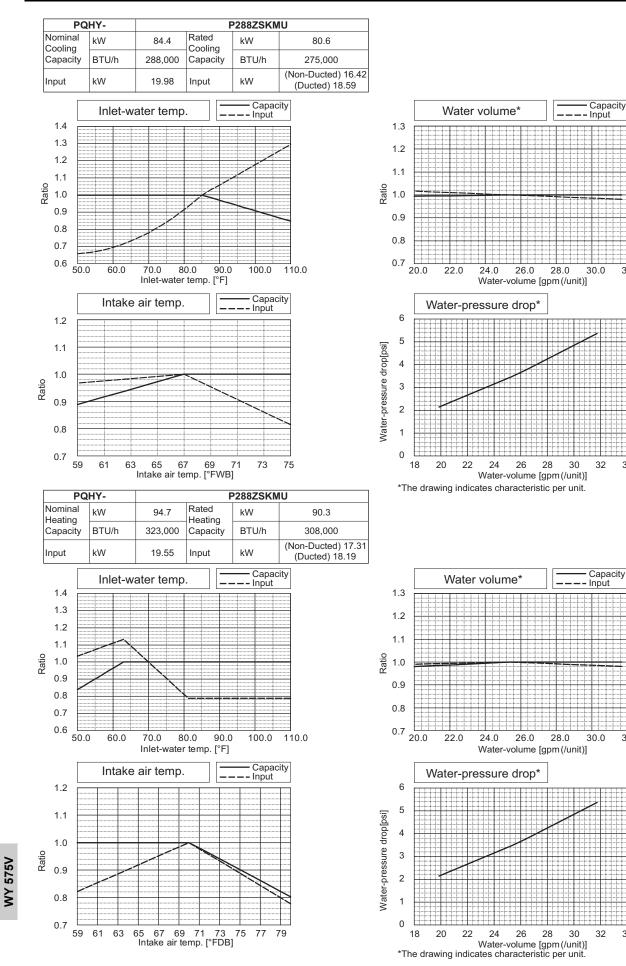

32.0


32 34

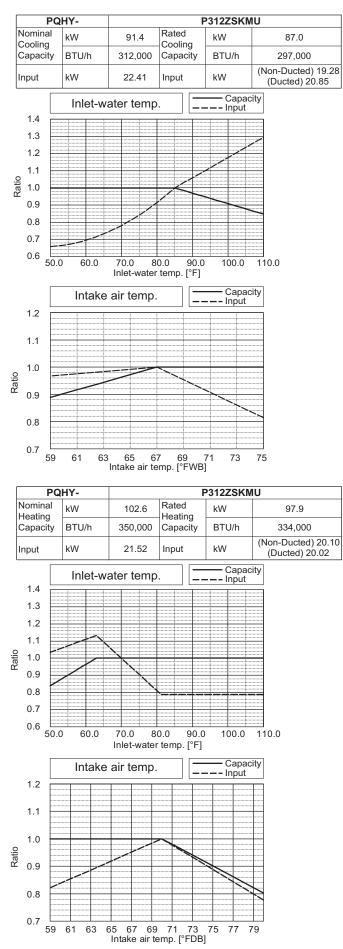
2 - 1056

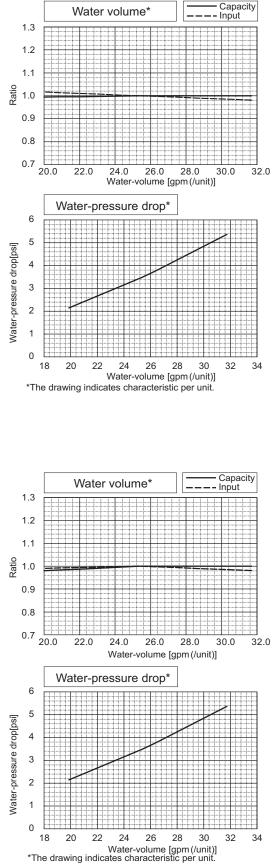
Water volume*

Capacity

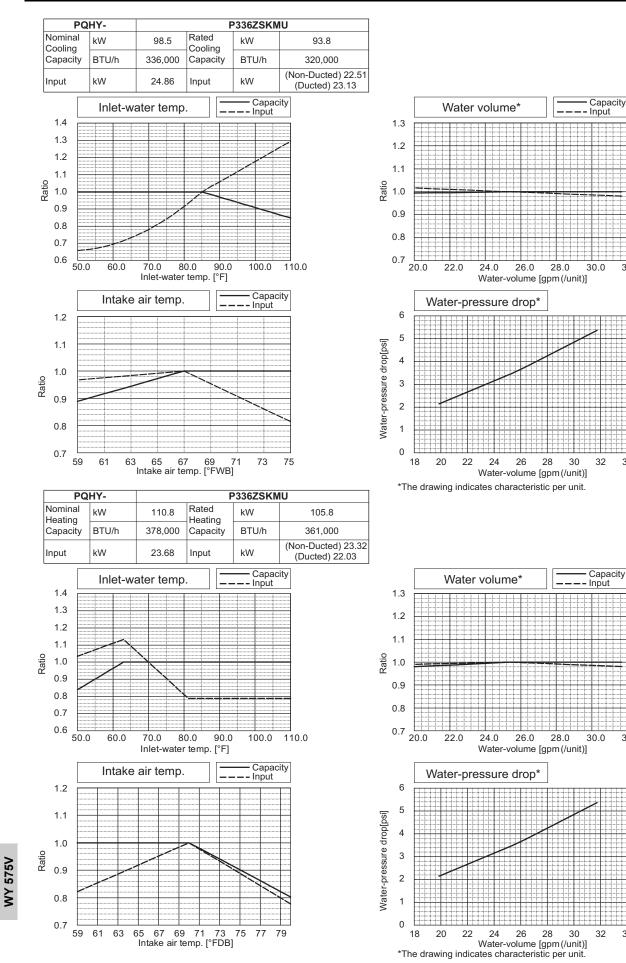

U11 2nd

32.0


34


32.0

34


MEE15K058

32.0

34

32.0

34

PQHY-

kW

kW

BTU/h

Nominal

Cooling

Capacity

Input

1.4

1.3

1.2

1.1 Ratio

1.0

0.9

0.8

0.7 0.6

1.2

1.1

1.0 Ratio

0.9

0.8

0.7

Nominal

Heating

Capacity

59 61

PQHY-

kW

BTU/h

50.0

60.0

P360ZSKMU

kW

kW

BTU/h

Capacity

Input

100.0

-- Input

73 75

P360ZSKMU

kW

BTU/h

Capacity

110.0

Rated

Input

80.0

65 67 69 7 Intake air temp. [°FWB]

118.7

405,000

Rated

Heating

Capacity

Inlet-water temp.

70.0

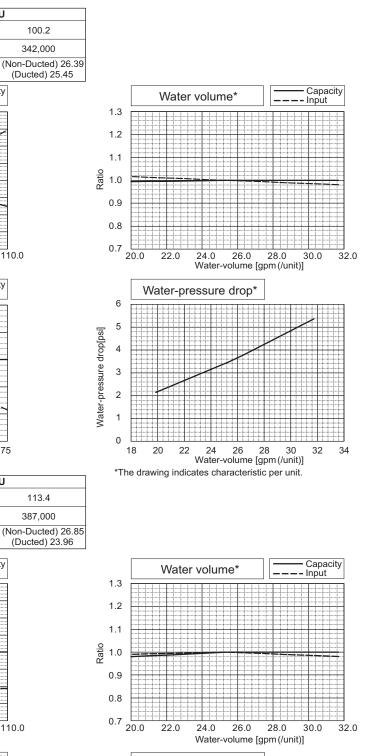
Intake air temp.

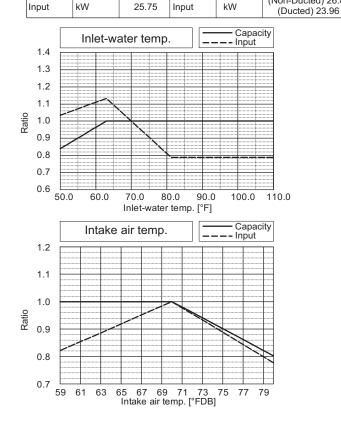
63

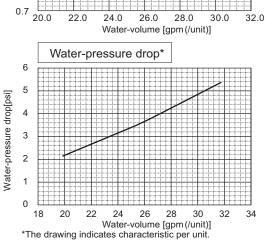
90.0

[°F]

Cooling

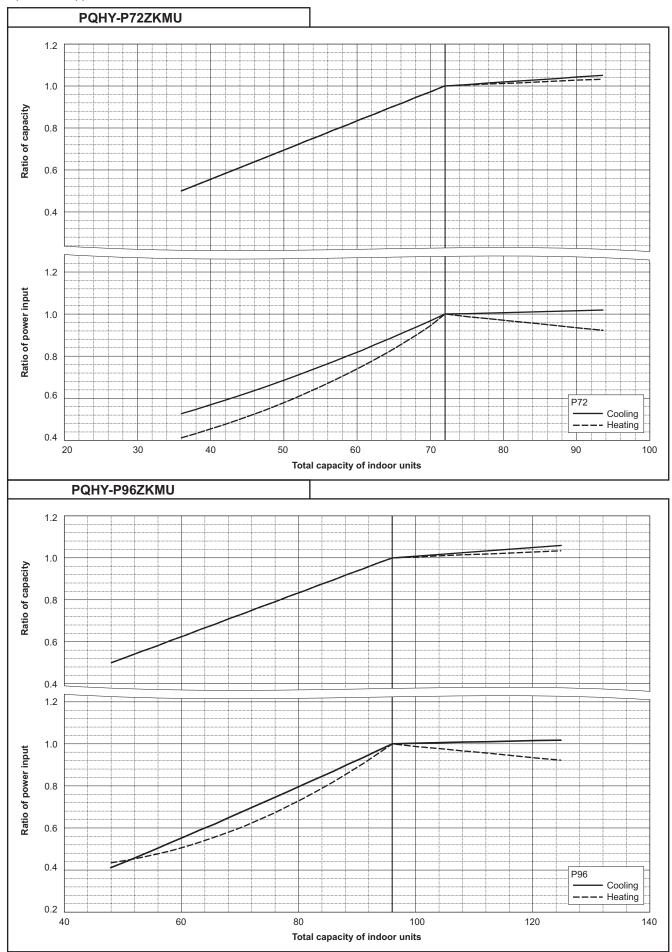

Capacity

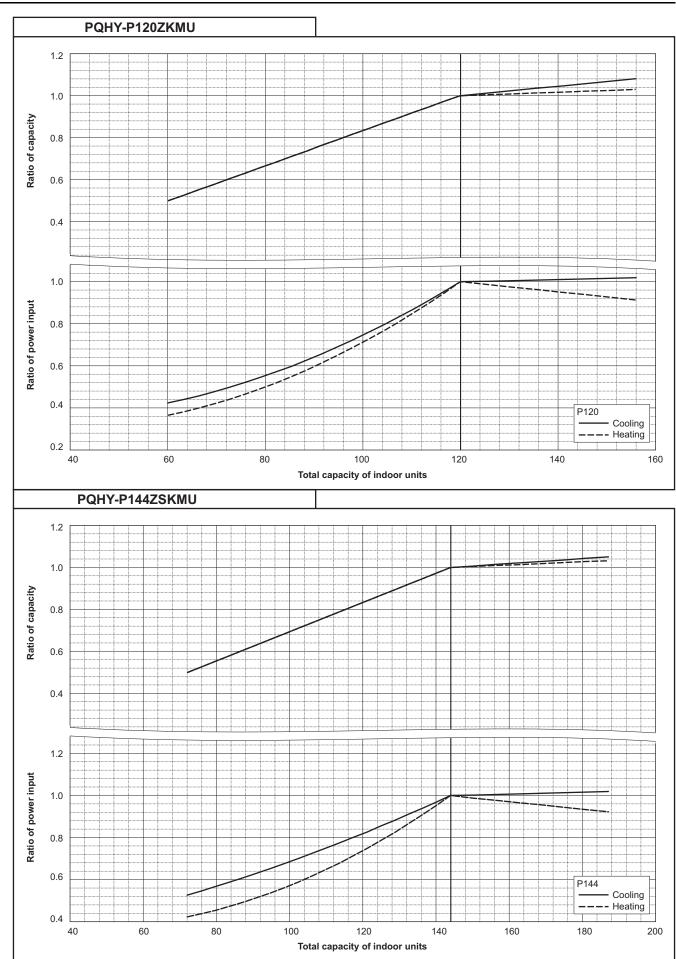

105.5

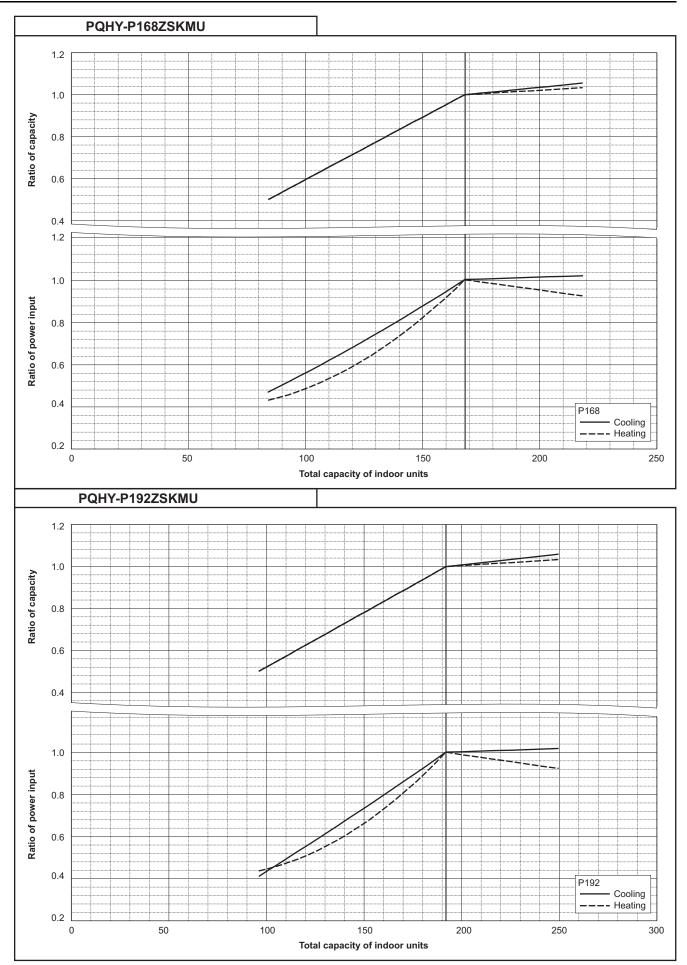

360,000

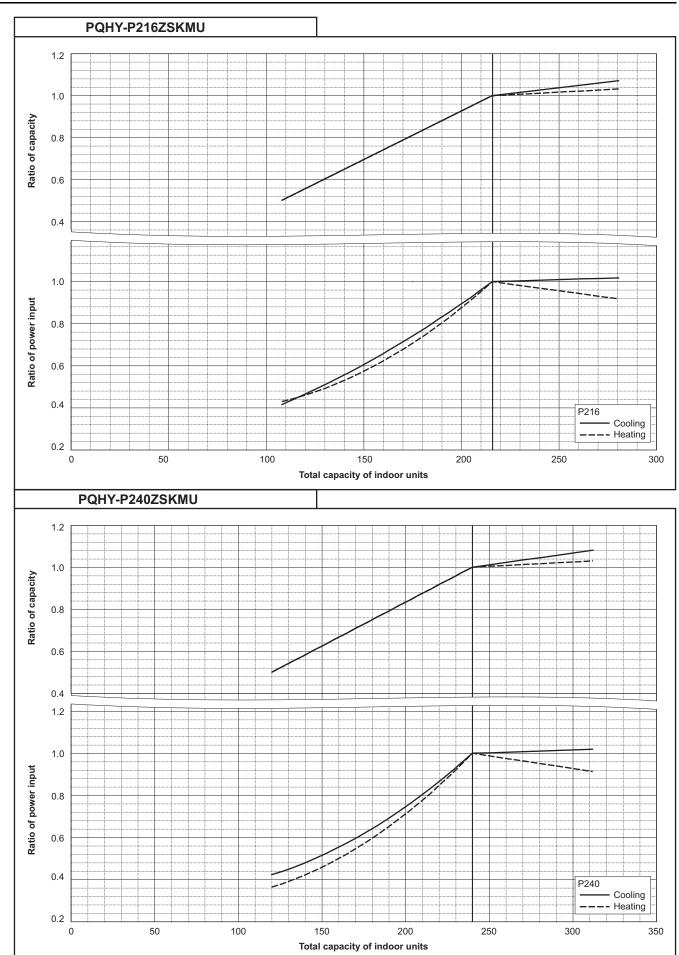
27.35

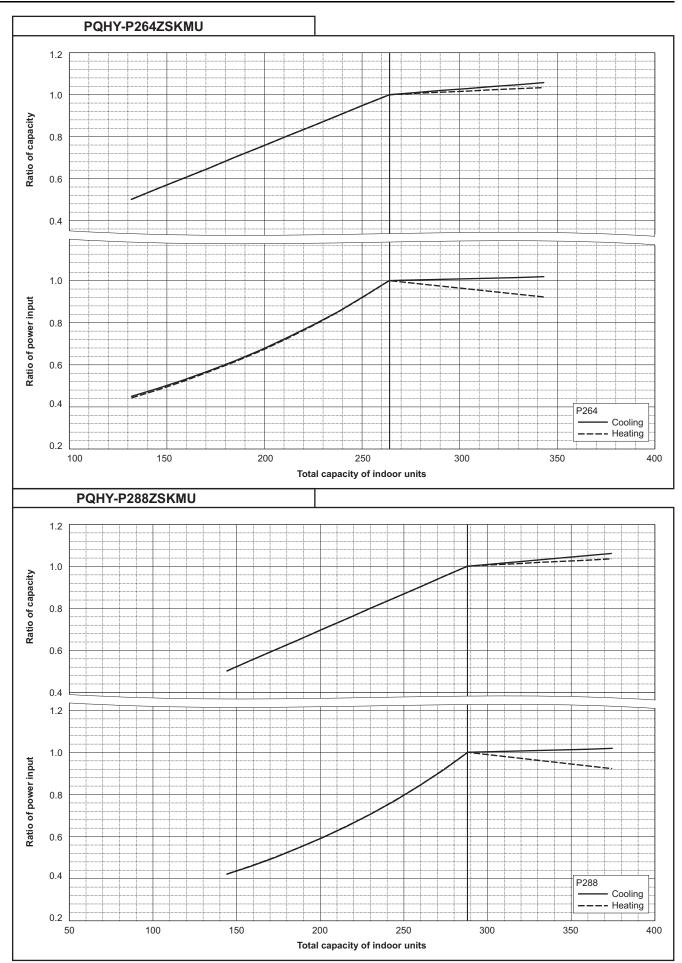
Inlet-water temp

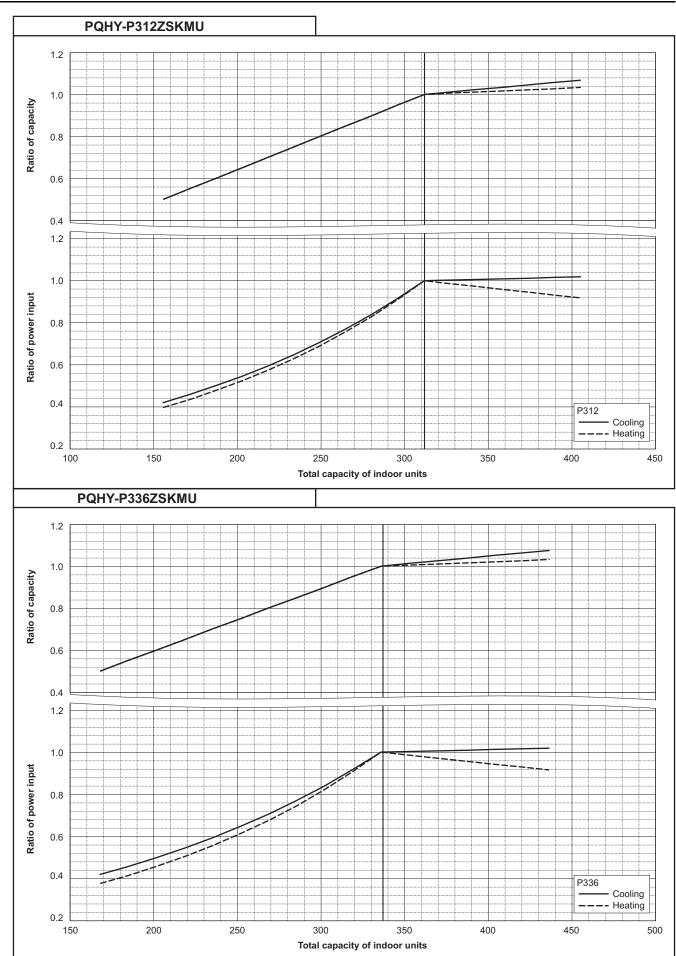


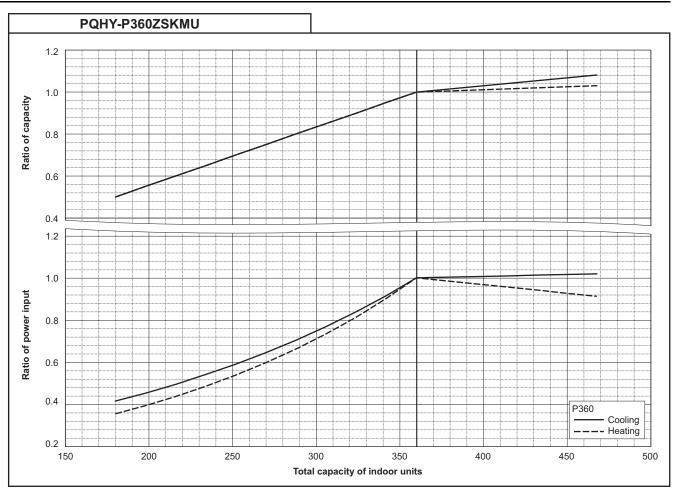


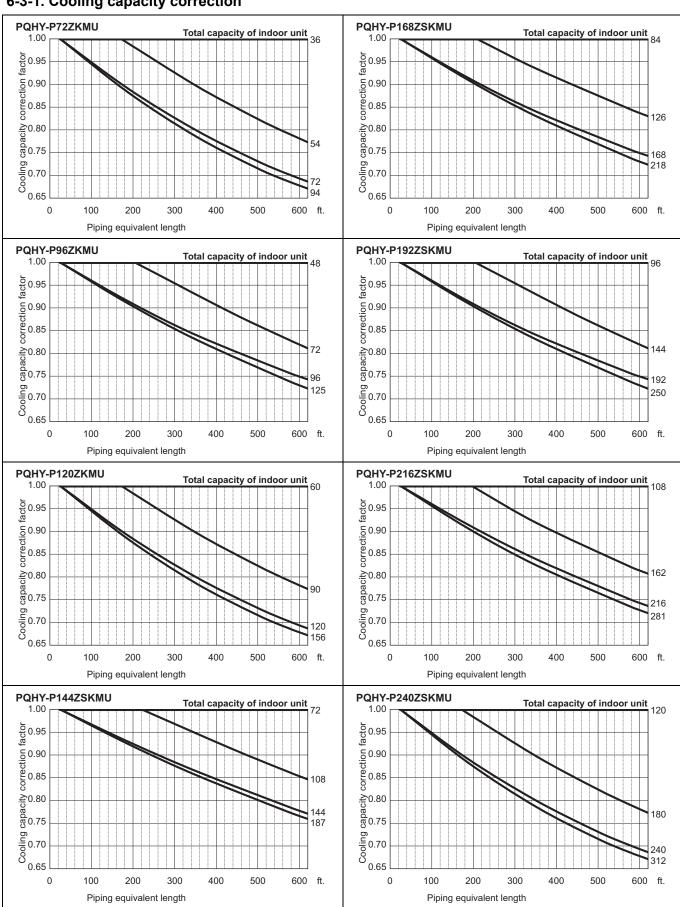


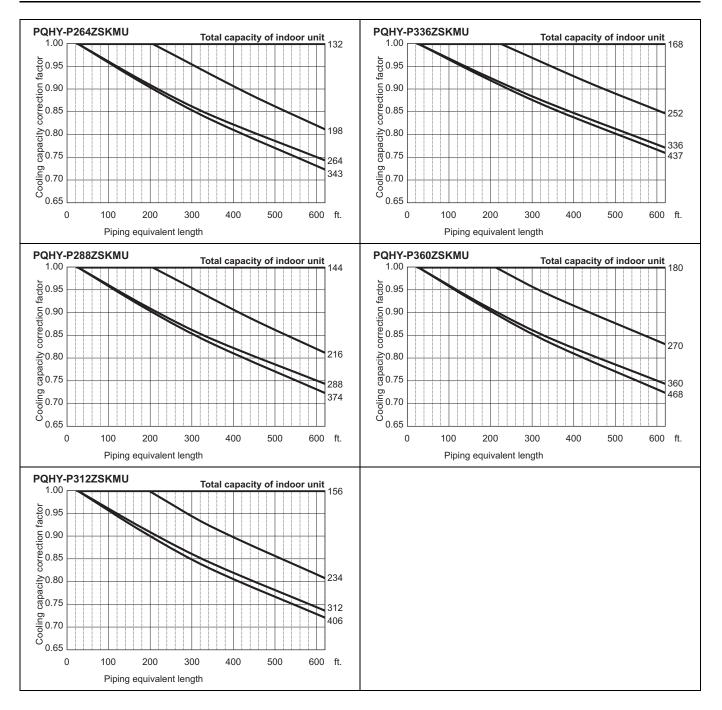

6-2. Correction by total indoor

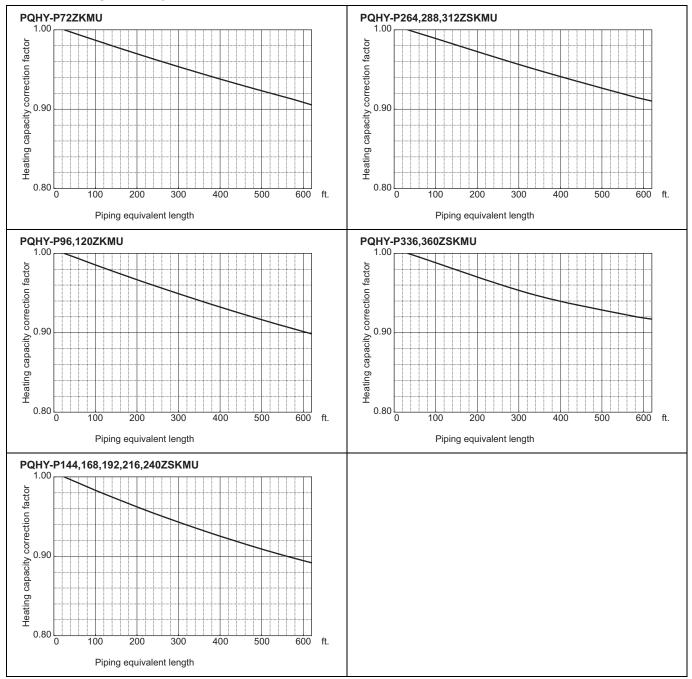

CITY MULTI system have different capacities and inputs when many combinations of indoor units with different total capacities are connected. Using following tables, the maximum capacity can be found to ensure the system is installed with enough capacity for a particular application.










6-3. Correction by refrigerant piping length

CITY MULTI system can extend the piping flexibly within its limitation for the actual situation. However, a decrease of cooling/ heating capacity could happen correspondently. Using following correction factor according to the equivalent length of the piping shown at 6-3-1 and 6-3-2, the capacity can be observed. 6-3-3 shows how to obtain the equivalent length of piping.

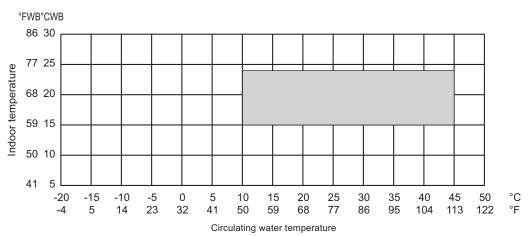
6-3-1. Cooling capacity correction

6-3-3. How to obtain the equivalent piping length

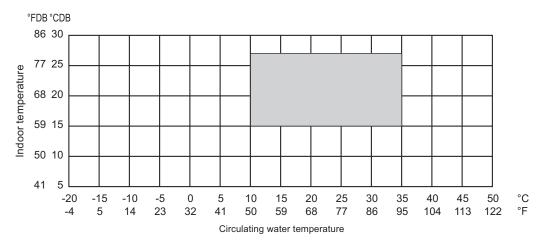
1. PQHY-P72ZKMU

Equivalent length = (Actual piping length to the farthest indoor unit) + (1.15 x number of bent on the piping) [ft.] Equivalent length = (Actual piping length to the farthest indoor unit) + (0.35 x number of bent on the piping) [m] **2. PQHY-P96, 120ZKMU**

- Equivalent length = (Actual piping length to the farthest indoor unit) + (1.38 x number of bent on the piping) [ft.] Equivalent length = (Actual piping length to the farthest indoor unit) + (0.42 x number of bent on the piping) [m] **3. PQHY-P144, 168, 192, 216, 240ZSKMU**
- Equivalent length = (Actual piping length to the farthest indoor unit) + $(1.64 \times \text{number of bent on the piping)}$ [ft.] Equivalent length = (Actual piping length to the farthest indoor unit) + $(0.50 \times \text{number of bent on the piping)}$ [m]


4. PQHY-P264, 288, 312ZSKMU Equivalent length = (Actual piping length to the farthest indoor unit) + (2.30 x number of bent on the piping) [ft.] Equivalent length = (Actual piping length to the farthest indoor unit) + (0.70 x number of bent on the piping) [m]

5. PQHY-P336, 360ZSKMU


Equivalent length = (Actual piping length to the farthest indoor unit) + (2.63 x number of bent on the piping) [ft.] Equivalent length = (Actual piping length to the farthest indoor unit) + (0.80 x number of bent on the piping) [m]

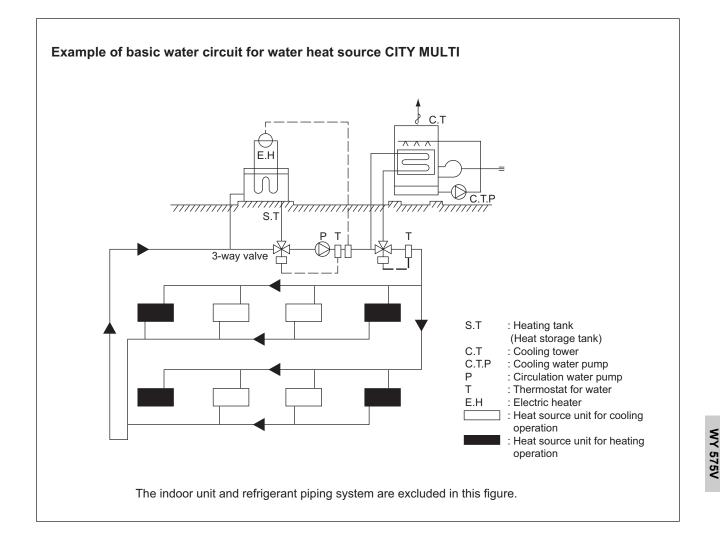
6-4. Operation temperature range

Heating

7-1. Designing of water circuit system

1) Example of basic water circuit

The water circuit of the water heat source CITY MULTI connects the heat source unit with the cooling tower/auxiliary heat source/heat storage tank/circulation pump with a single system water piping as shown in the figure below. The selector valve automatically controls to circulate water toward the cooling tower in the cooling season, while toward the heat storage tank in the heating season. If the circulation water temperature is kept in a range of 10~45°C [50~113°F]* regardless of the building load, the water heat source CITY MULTI can be operated for either cooling or heating. Therefore in the summer when only cooling load exists, the temperature rise of circulation water will be suppressed by operating the cooling tower. While in the winter when heating load increases, the temperature of circulation water may be dropped below 10°C [50°F]. Under such situation, the circulation water will be heated with the auxiliary heat source if it drops below a certain temperature.


When the thermal balance between cooling and heating operation is in a correct proportion, the operation of the auxiliary heat source and cooling tower is not required.

In order to control the above thermal balance properly and use thermal energy effectively, utilizing of heat storage tanks, and night-time discounted electric power as a auxiliary heat source will be economical.

Meantime as this system uses plural sets of heat source unit equipped with water heat exchangers, water quality control is important. Therefore it is recommended to use closed type cooling towers as much as possible to prevent the circulation water from being contaminated.

When open type cooling towers are used, it is essential to provide proper maintenance control such as that to install water treatment system to prevent troubles caused by contaminated circulation water.

*10~45°C [50~113°F] : 50%~130% of indoor units can be connected

2) Cooling tower

a) Types of cooling tower

The cooling towers presently used include the open type cooling tower, open type cooling tower + heat exchanger, closed type cooling tower, and air-cooled type cooling tower. However, as the quality control of circulation water is essential when units are installed in decentralized state inside a building, the closed type cooling tower is generally employed in such case.

Although the circulation water will not be contaminated by atmospheric air, it is recommended to periodically blow water inside the system and replenish fresh water instead.

In a district where the coil may be frozen in the winter, it is necessary to apply antifreeze solution to the circulation water, or take freeze protection measures such as to automatically discharge water inside the cooling coil at the stopping of the pump.

When the open type cooling tower is used, be sure to install a water quality control device in addition to the freeze protection measures, as the water may be deteriorated by atmospheric contaminants entered into the cooling tower and dissolved into the circulation water.

Types of cooling towers Closed type Air-cooled type ılı

b) Calculation method of cooling tower capacity

All units of the water heat source CITY MULTI may possibly be in cooling operation temporarily (at pulling down) in the summer, however, it is not necessary to determine the capacity according to the total cooling capacity of all CITY MULTI units as this system has a wide operating water temperature range (10~45°C) [50~113°F].

It is determined in accordance with the value obtained by adding the maximum cooling load of an actual building, the input heat equivalent value of all CITY MULTI units, and the cooling load of the circulating pumps. Please check for the values of the cooling water volume and circulation water volume.

> $Qc + 860 \times (\Sigma Qw + Pw)$ Cooling tower capacity = (Refrigeration ton) 3.900

Qc	: Maximum cooling load under actual state	(kcal/h)
----	---	----------

: Total input of water heat source CITY MULTI at simultaneous operation Ωw under maximum state (kW) (kW)

: Shaft power of circulation pumps Pw

Cooling tower capacity =
$$\frac{Qc + 3,412 \times (\Sigma Qw + Pw)}{15,500}$$
 (Refrigeration ton)

* 1 Refrigerant ton of cooling tower capacity \approx US refrigerant ton \times (1 + 0.3) = 3,900 kcal/h = 15,500 BTU/h

3) Auxiliary heat source and heat storage tank

When the heating load is larger than the cooling load, the circulation water temperature lowers in accordance with the heat balance of the system. It should be heated by the auxiliary heat source in order to keep the inlet water temperature within the operating range ($10^{\circ}C$ [$50^{\circ}F$] or more) of the water heat source CITY MULTI.

Further in order to operate the water heat source CITY MULTI effectively, it is recommended to utilize the heat storage tank to cover the warming up load in the morning and the insufficient heat amount.

Effective heat utilization can be expected to cover insufficient heat at the warming up in the next morning or peak load time by storing heat by installing a heat storage tank or operating a low load auxiliary heat source at the stopping of the water heat source CITY MULTI. As it can also be possible to reduce the running cost through the heat storage by using the discounted night-time electric power, using both auxiliary heat source and heat storage tank together is recommended. The effective temperature difference of an ordinary heat storage tank shows about 5°C [41°F] even with the storing temperature at 45°C [113°F].

However with the water heat source CITY MULTI, it can be utilized as heating heat source up to 15°C [59°F] with an effective temperature of a high 30°C [54°F] approximately, thus the capacity of the heat storage tank can be minimized.

a) Auxiliary heat source

The following can be used as the auxiliary heat source.

Boiler (Heavy oil, kerosine, gas, electricity)

- Electric heat (Insertion of electric heater into heat storage tank)
- Outdoor air (Air-heat source heat pump chiller)
- Warm discharge water (Exhaust water heat from machines inside building and hot water supply)
- Utilization of night-time lighting
- Solar heat

Please note that the auxiliary heat source should be selected after studying your operating environment and economical feasibility.

Determining the auxiliary heat source capacity

For the CITY MULTI water heat source system, a heat storage tank is recommended to use. When employment of the heat storage tank is difficult, the warming up operation should be arranged to cover the starting up heating load. Since the holding water inside the piping circuit owns heat capacity and the warming up operation can be assumed for about one hour except that in a cold region, the heat storage tank capacity is required to be that at the maximum daily heating load including the warming up load at the next morning of the holiday. However the auxiliary heat source capacity should be determined by the daily heating load including warming up load on the week day. For the load at the next morning of the holiday, heat storage is required by operating the auxiliary heat source even outside of the ordinary working hour.

When heat storage tank is not used

	QH = H	ICT $(1 - \frac{1}{COP_h}) - 1000 \times Vw \times \Delta T - 860 \times Pw$		
	QH	: Auxiliary heat source capacity	(kcal/h)	
	НС⊤	: Total heating capacity of each water heat source CITY MULTI	(kcal/h)	
	СОРн	: COP of water heat source CITY MULTI at heating		
	Vw	: Holding water volume inside piping	(m³)	
	ΔT	: Allowable water temperature drop = TwH - TwL	(°C)	
	Тwн	: Heat source water temperature at high temperature side	(°C)	
	TWL	: Heat source water temperature at low temperature side	(°C)	
	Pw	: Heat source water pump shaft power	(kW)	
/	QH = H	ICT $(1 - \frac{1}{COP_h}) = 8.343 \times Vw \times \Delta T = 3412 \times Pw$		
	QH	: Auxiliary heat source capacity	(BTU/h)	
	НС⊤	: Total heating capacity of each water heat source CITY MULTI	(BTU/h)	
	СОРн	: COP of water heat source CITY MULTI at heating		
	Vw	: Holding water volume inside piping	(G)	
	ΔT	: Allowable water temperature drop = TwH - TwL	(°F)	
	Тwн	: Heat source water temperature at high temperature side	(°F)	
	TWL	: Heat source water temperature at low temperature side	(°F)	
	Pw	: Heat source water pump shaft power	(kW)	

When heat storage tank is not used

$$HQ_{1T} \cdot \left(1 - \frac{1}{COP_{h}}\right) - 860 \times Pw \times T_{2}$$

$$QH = \frac{1}{T1} \times K \qquad (kcal)$$

$$QH_{1T} : Total of heating load on weekday including warming up (kcal/day)$$

$$T_{1} : Operating hour of auxiliary heat source (h)$$

$$T_{2} : Operating hour of heat source water pump (h)$$

 12
 : Operating hour of heat source water pump
 (h)

 K
 : Allowance factor (Heat storage tank, piping loss, etc.)
 1.05~1.10

 HOLT is calculated from the result of storage state load calculation similarly by using the equation

HQ_{1T} is calculated from the result of steady state load calculation similarly by using the equation below. HQ_{1T} = $1.15 \times (\Sigma Q'a + \Sigma Q'b + \Sigma Q'c + \Sigma Q'd + \Sigma Q'f) T_2 - \Psi (\Sigma Qe_1 + \Sigma Qe_2 + \Sigma Qe_3) (T_2 - 1)$

Q'a	: Thermal load from external wall/roof in each zone	(kcal/h)
Q'b	: Thermal load from glass window in each zone	(kcal/h)
Q'c	: Thermal load from partition/ceiling/floor in each zone	(kcal/h)
Q'd	: Thermal load by infiltration in each zone	(kcal/h)
Q'f	: Fresh outdoor air load in each zone	(kcal/h)
Q'e1	: Thermal load from human body in each zone	(kcal/h)
Q'e2	: Thermal load from lighting fixture in each zone	(kcal/h)
Q'e ₃	: Thermal load from equipment in each zone	(kcal/h)
Ψ	: Radiation load rate	0.6~0.8
T2	: Air conditioning hour	

$$HQ_{1T} \cdot \left(1 - \frac{1}{COP_{h}}\right) - 3,412 \times Pw \times T_{2}$$

$$QH = \frac{1}{T1} \times K \qquad (BTU)$$

QH1T	: Total of heating load on weekday including warming up	(BTU/day)
T 1	: Operating hour of auxiliary heat source	(h)
T2	: Operating hour of heat source water pump	(h)
K	: Allowance factor (Heat storage tank, piping loss, etc.)	1.05~1.10

HQ1T is calculated from the result of steady state load calculation similarly by using the equation below.

 $HQ_{1T} = 1.15 \times (\Sigma Q'a + \Sigma Q'b + \Sigma Q'c + \Sigma Q'd + \Sigma Q'f) T_2 - \psi (\Sigma Qe_1 + \Sigma Qe_2 + \Sigma Qe_3) (T2 - 1)$

Q'a	: Thermal load from external wall/roof in each zone	(BTU/h)
Q'b	: Thermal load from glass window in each zone	(BTU/h)
Q'c	: Thermal load from partition/ceiling/floor in each zone	(BTU/h)
Q'd	: Thermal load by infiltration in each zone	(BTU/h)
Q'f	: Fresh outdoor air load in each zone	(BTU/h)
Q'e1	: Thermal load from human body in each zone	(BTU/h)
Q'e2	: Thermal load from lighting fixture in each zone	(BTU/h)
Q'e3	: Thermal load from equipment in each zone	(BTU/h)
Ψ	: Radiation load rate	0.6~0.8
T2	: Air conditioning hour	

b) Heat storage tank

Heat storage tank can be classified by types into the open type heat storage tank exposed to atmosphere, and the closed type heat storage tank with structure separated from atmosphere. Although the size of the tank and its installation place should be taken into account, the closed type tank is being usually employed by considering corrosion problems.

The capacity of heat storage tanks is determined in accordance with the daily maximum heating load that includes warming up load to be applied for the day after the holiday.

When auxiliary heat source is operated during operation and even after stopping of water heat source CITY MULTI unit

 $V = \frac{HQ_{2T} \left(1 - \frac{1}{COP_{h}}\right) - 860 \times Pw \times T_{2} - QH \times T_{2}}{\Delta T \times 1,000 \times \eta V}$ (ton) HQ_{2T} : Maximum heating load including load required for the day after the holiday (kcal/day)

HQ2T: Maximum heating load including load required for the day after the holiday (KCal/day ΔT : Temperature difference utilized by heat storage tank(°C) ηV : Heat storage tank efficiency

HQ_{2T} : 1.3 × (Σ Q'a + Σ Q'c + Σ Q'd + Σ Q'f) T₂ - Ψ (Σ Qe2 + Σ Qe3) (T2 - 1)

$$V = \frac{HQ_{2T} \left(1 - \frac{1}{COP_{h}}\right) - 3,412 \times Pw \times T_{2} - QH \times T_{2}}{\Delta T \times \eta V}$$
(Ibs)

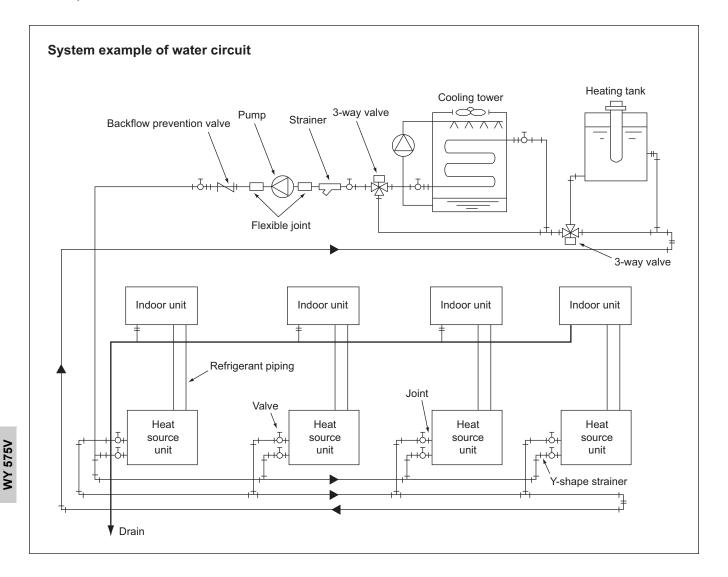
$$HQ_{2T} \qquad : Maximum heating load including load required for the day after the holiday (BTU/day)
$$\Delta T \qquad : Temperature difference utilized by heat storage tank \qquad (^{\circ}F)
$$\eta V \qquad : Heat storage tank efficiency
HQ_{2T} \qquad : 1.3 \times (\SigmaQ'a + \SigmaQ'c + \SigmaQ'd + \SigmaQ'f) T_{2} - \Psi (\SigmaQe2 + \SigmaQe3) (T2 - 1)$$$$$$

When auxiliary heat source is operated after stopping of water heat source CITY MULTI unit

$$V = \frac{HQ_{2T} (1 - \frac{1}{COP_{h}}) - 860 \times Pw \times T_{2}}{\Delta T \times 1,000 \times \eta V}$$
(ton)

 $\begin{array}{ll} HQ_{2T} & : \mbox{ Maximum heating load including load required for the day after the holiday (kcal/day)} \\ \Delta T & : \mbox{ Temperature difference utilized by heat storage tank (°C)} \\ \eta V & : \mbox{ Heat storage tank efficiency} \end{array}$

HQ_{2T} : 1.3 × (
$$\Sigma$$
Q'a + Σ Q'c + Σ Q'd + Σ Q'f) T₂ - ψ (Σ Qe2 + Σ Qe3) (T2 - 1)

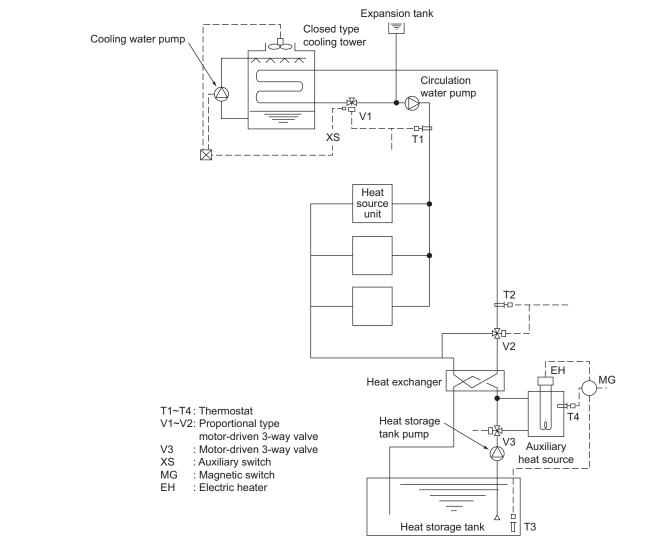

$$\begin{array}{c} V = & \displaystyle \frac{HQ_{2T}\left(1-\frac{1}{COP_{h}}\right) - 3,412 \times Pw \times T_{2}}{\Delta T \times \eta V} & (Ibs) \\ HQ_{2T} & : Maximum heating load including load required for the day after the holiday (BTU/day) \\ \Delta T & : Temperature difference utilized by heat storage tank (°F) \\ \eta V & : Heat storage tank efficiency \\ HQ_{2T} & : 1.3 \times (\SigmaQ'a + \SigmaQ'c + \SigmaQ'd + \SigmaQ'f) T_{2} - \psi (\SigmaQe2 + \SigmaQe3) (T2 - 1) \end{array}$$

The following items should be kept in your mind in planning / designing water circuits.

- a) All units should be constituted in a single circuit in principle.
- b) When plural numbers of the water heat source CITY MULTI unit are installed, the rated circulating water flow rate should be kept by making the piping resistance to each unit almost same value. As an example, the reverse return system as shown below may be employed.
- c) Depending on the structure of a building, the water circuit may be prefabricated by making the layout uniform.
- d) When a closed type piping circuit is constructed, install an expansion tank usable commonly for a make-up water tank to absorb the expansion/contraction of water caused by temperature fluctuation.
- e) If the operating temperature range of circulation water stays within the temperature near the normal temperature (summer :29.4°C [85°F], winter :21.1°C [70°F]), thermal insulation or anti-sweating work is not required for the piping inside buildings.

In case of the conditions below, however, thermal insulation is required.

- When well water is used for heat source water.
- When piped to outdoor or a place where freezing may be caused.
- When vapor condensation may be generated on piping due to an increase in dry bulb temperature caused by the entry of fresh outdoor air.

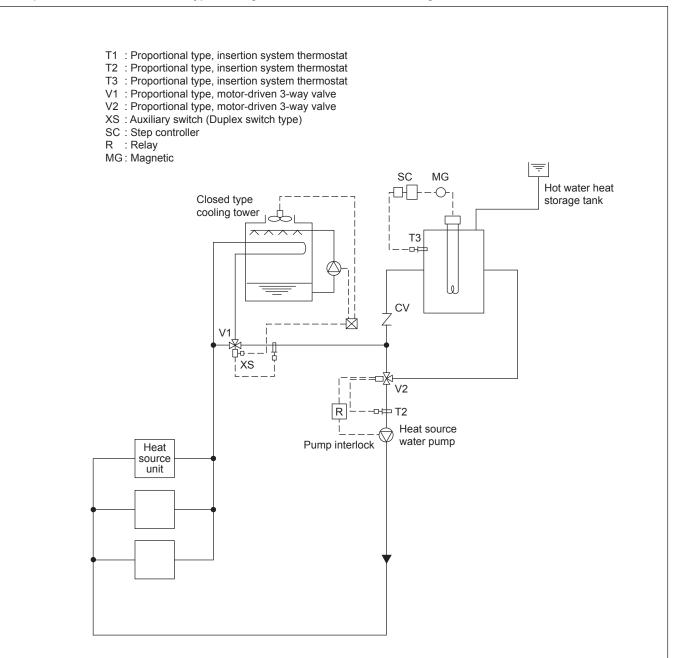

5) Practical System Examples and Circulation Water Control

Since the water heat source CITY MULTI is of water heat source system, versatile systems can be constituted by combining it with various heat sources.

The practical system examples are given below.

Either cooling or heating operation can be performed if the circulation water temperature of the water heat source CITY MULTI stays within a range of 10~45°C [50~113°F]. However, the circulation water temperature near 32°C [90°F] for cooling and 20°C [68°F] for heating is recommended by taking the life, power consumption and capacity of the air conditioning units into consideration. The detail of the control is also shown below.

Example-1 Combination of closed type cooling tower and hot water heat storage tank (using underground hollow slab)

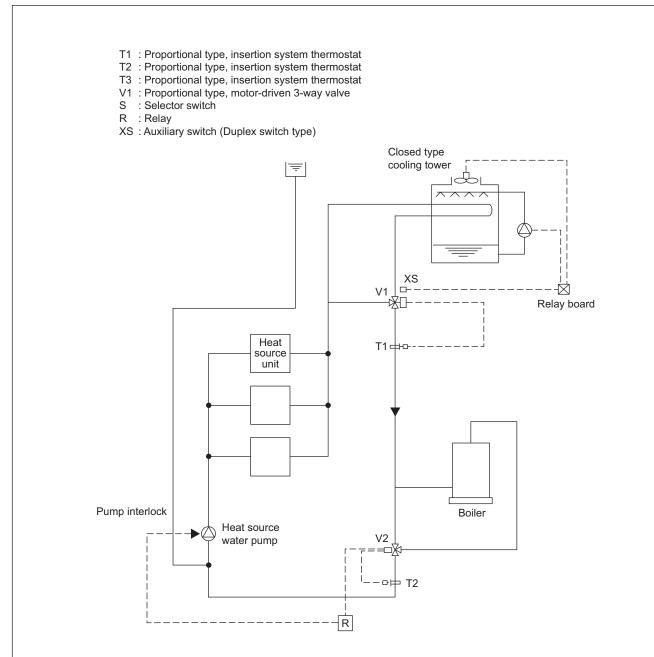

By detecting the circulation water temperature of the water heat source CITY MULTI system with T1 (around 32°C [90°F]) and T2 (around 20°C [68°F]), the temperature will be controlled by opening/closing V1 in the summer and V2 in the winter.

In the summer, as the circulation water temperature rises exceeding the set temperature of T1, the bypass port of V1 will open to lower the circulation water temperature. While in the winter, as the circulation water temperature drops, V2 will open following the command of T2 to rise the circulation water temperature.

The water inside the heat storage tank will be heated by the auxiliary heat source by V3 being opened with timer operation in the night-time. The electric heater of the auxiliary heat source will be controlled by T3 and the timer. The start/stop control of the fan and pump of the closed type cooling tower is applied with the step control of the fan and pump following the command of the auxiliary switch XS of V1, that operates only the fan at the light load while the fan and pump at the maximum load thus controlling water temperature and saving motor power.

7. SYSTEM DESIGN GUIDE

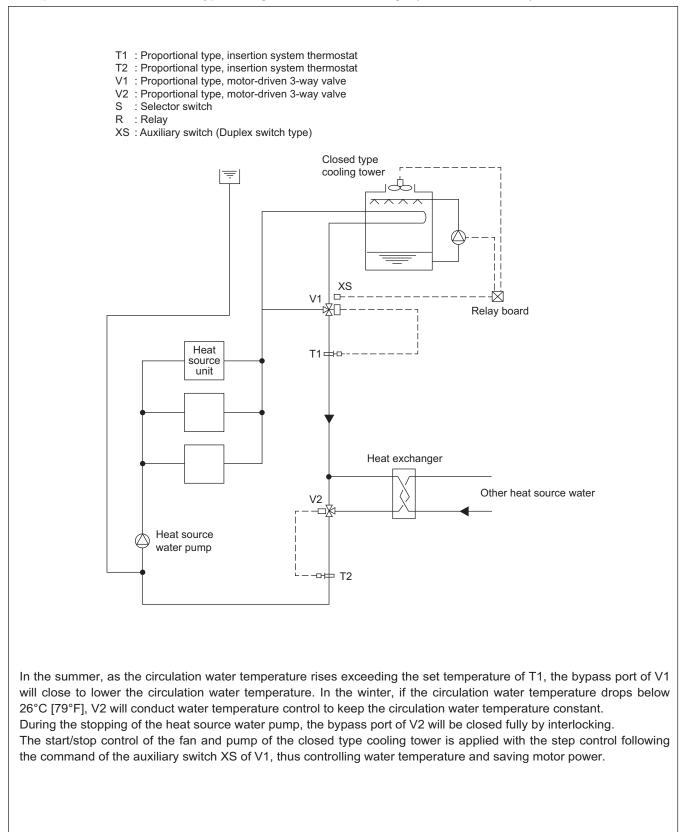
Example-2 Combination of closed type cooling tower and hot water heat storage tank

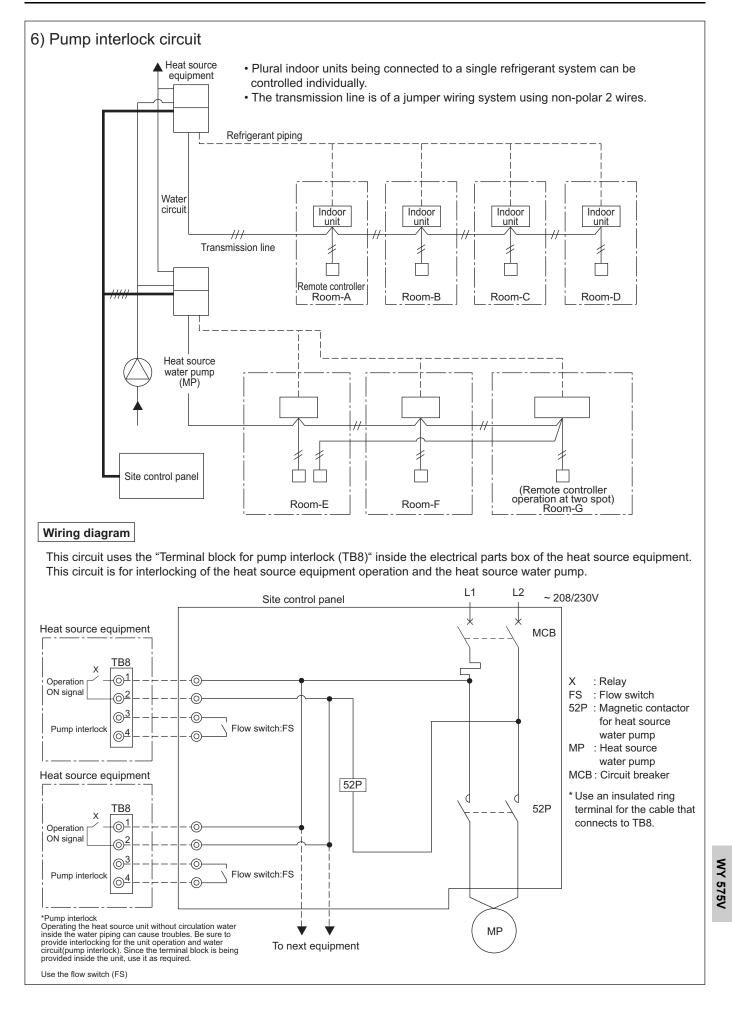

In the summer, as the circulation water temperature rises exceeding the set temperature of T1, the bypass port of V1 will open to lower the circulation water temperature. In the winter, if the circulation water temperature stays below 25°C [77°F], V2 will open/close by the command of T2 to keep the circulation water temperature constant.

The temperature of the hot water inside the heat storage tank will be controlled through the step control of the electric heater by step controller operation following the command of T3.

During the stopping of the heat source water pump, the bypass port of V2 will be closed fully by interlocking thus preventing the high temperature water from entering into the system at the starting of the pump.

The start/stop control of the fan and pump of the closed type cooling tower is applied with the step control of the fan and pump following the command of the auxiliary switch XS of V1, that operates only the fan at the light load while the fan and pump at the maximum load thus controlling water temperature and saving motor power.


Example-3 Combination of closed type cooling tower and boiler



In the summer, as the circulation water temperature rises exceeding the set temperature of T1, the bypass port of V1 will close to lower the circulation water temperature. In the winter, if the circulation water temperature drops below 25°C [77°F], V2 will conduct water temperature control to keep the circulation water temperature constant. During the stopping of the heat source water pump, the bypass port of V2 will be closed fully by interlocking. The start/stop control of the fan and pump of the closed type cooling tower is applied with the step control following the command of the auxiliary switch XS of V1, thus controlling water temperature and saving motor power.

7. SYSTEM DESIGN GUIDE

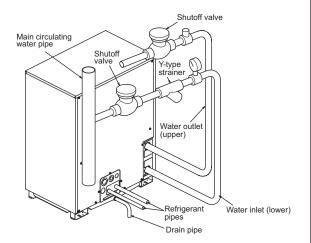
Example-4 Combination of closed type cooling tower and heat exchanger (of other heat source)

7. SYSTEM DESIGN GUIDE

ration ON sigr	nal			
Terminal No.	TB8-1, 2			
Output	Relay contacts output Rated voltage: 3~: 208/230V Rated load: 1 A			
• When setting No.917 for Dip switch 4 (Dip switch 6-10 is ON) is OFF. The relay closes during compressor operation.				
	SW4 0: OFF, 1: ON 1 2 3 4 5 6 7 8 9 10 1 0 1 0 1 1 1 1 1			
	 When setting No.917 for Dip switch 4 (Dip switch 6-10 is ON) is ON. The relay closes during reception of cooling or the heating operation signal from the controller. (Note: It is output even if the thermostat is OFF (when the compressor is stopped).) 			
p Interlock				
p Interlock Terminal No.	ТВ8-3, 4			
	TB8-3, 4 Level signal			
Terminal No.				
Terminal No. Input Operation *Remove the s To prevent a fa	Level signal			
Terminal No. Input Operation *Remove the s To prevent a fa	Level signal If the circuit between TB8-3 and TB8-4 is open, compressor operation is prohibited. hort circuit wire between 3 and 4 when wiring to TB8. alse detection of error resulting from contact failure, use a flow switch with a minimum rrent of 5 mA or below for FS. TB8 4 O TB8			
Terminal No. Input Operation *Remove the s To prevent a fa	Level signal If the circuit between TB8-3 and TB8-4 is open, compressor operation is prohibited. hort circuit wire between 3 and 4 when wiring to TB8. alse detection of error resulting from contact failure, use a flow switch with a minimum rrent of 5 mA or below for FS.			

7-2. Water piping work

Although the water piping for the CITY MULTI WY system does not differ from that for ordinary air conditioning systems, pay special attention to the items below in conducting the piping work.


1) Items to be observed on installation work

- The water pressure resistance of the water pipes in the heat source unit is 2.0MPa [290psi].
- In order to equalize piping resistance for each unit, adapt the reverse return system.
- Mount a joint and a valve onto the water outlet/inlet of the unit to allow for maintenance, inspection and replacement work. Be sure to mount a strainer at the water inlet piping of the unit. (The strainer is required at the circulation water inlet to protect the heat source unit.)
- * The installation example of the heat source unit is shown right.
- Be sure to provide an air relief opening on the water piping properly, and purge air after feeding water to the piping system.
- Condensate will generate at the low temperature part inside the heat source equipment. Connect drain piping to the drain piping connection located at the bottom of the heat source equipment to discharge it outside the equipment.
- Mount a backflow prevention valve and a flexible joint for vibration control onto the pump.
- Provide a sleeve to the penetrating parts of the wall to prevent the piping.
- Fasten the piping with metal fitting, arrange the piping not to expose to cutting or bending force, and pay sufficient care for possible vibration.
- Be careful not to erroneously judge the position of the inlet and outlet of water.
- (Lower position : Inlet, Upper position : Outlet)
- When connecting heat source unit water piping and water piping on site, apply liquid sealing material for water piping over the sealing tape before connection.
- This unit doesn't include a heater to prevent freezing within tubes. If the water flow is stopped on low ambient, drain the water out.
- The unused knockout holes should be closed and the refrigerant pipes, water pipes, power source and transmission wires access holes should be filled with putty.
- The drain plug is installed on the back of the unit at factory for field-connection of the drain pipes on the front of the unit. Move the plug to the front to connect the drain pipes on the back. Verify that there are no leaks from pipe connections.
- For installing two units, install water pipes in parallel to each other so that the water flow rate through both units will be equal.
- Wrap the sealing tape as follows.
- (1) Wrap the joint with sealing tape in the direction of the threads (clockwise), and do not let the tape run over the edge.
- (2) Overlap the sealing tape by two-thirds to three-fourths of its width on each turn. Press the tape with your fingers so that it is pressed firmly against each thread.
- (3) Leave the 1.5th through 2nd farthest threads away from the pipe end unwrapped.
- Hold the pipe on the unit side in place with a spanner when installing the pipes or strainer. Tighten screws to a torque of 150N m.

2) Thermal insulation work

- Thermal insulation or anti sweating work is not required for the piping inside buildings in the case of the CITY MULTI WY system if the operating temperature range of circulation water stays within the temperature near the normal (summer :30°C [86°F], winter : 20°C [68°F]).
- In case of the conditions below, however, thermal insulation is required.
- Use of well water for heat source water
- Outdoor piping portions
- · Indoor piping portions where freezing may be caused in winter

Installation example of heat source unit

- A place where vapor condensation may be generated on piping due to an increase in dry bulb temperature inside the ceiling caused by the entry of fresh outdoor air
- Drain piping portions

3) Water treatment and water quality control

- For the circulation water cooling tower of the CITY MULTI WY system, employment of the closed type is recommended to keep water quality. However, in the case that an open type cooling tower is employed or the circulating water quality is inferior, scale will adhere onto the water heat exchanger leading to the decreased heat exchange capacity or the corrosion of the heat exchanger. Be sufficiently careful for water quality control and water treatment at the installation of the circulation water system.
- · Removal of impurities inside piping
 - Be careful not to allow impurities such as welding fragment, remaining sealing material and rust from mixing into the piping during installation work.
- Water treatment

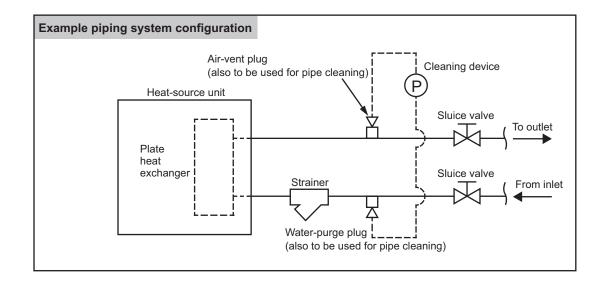
The water quality standards have been established by the industry (Japan Refrigeration, Air Conditioning Industry Association, in case of Japan) for water treatment to be applied.

			Lower m temperature	iid-range water system	Tendency	
[Recirculating water [20 <t<60°c] [68<t<140°f]< td=""><td>Make-up water</td><td>Corrosive</td><td>Scale- forming</td></t<140°f]<></t<60°c] 	Make-up water	Corrosive	Scale- forming	
	pH (25°C[77°F])		7.0 ~ 8.0	7.0 ~ 8.0	0	0
	Electric conductivity	(mS/m) (25°C[77°F])	30 or less	30 or less	0	0
		(µS/cm) (25°C[77°F])	[300 or less]	[300 or less]	0	0
	Chloride ion	(mg Cl ⁻ / ∉)	50 or less	50 or less	0	
Standard	Sulfate ion	(mg SO4 2-/ 🦉)	50 or less	50 or less	0	
items	Acid consumption	(pH4.8) (mg CaCO₃/ ∉)	50 or less	50 or less		0
	Total hardness	(mg CaCO₃/ ∉)	70 or less	70 or less		0
	Calcium hardness	(mg CaCO ₃ / 🦉)	50 or less	50 or less		0
	Ionic silica	(mg SiO ₂ / (/)	30 or less	30 or less		0
Refer-	Iron	(mg Fe/ 🖉)	1.0 or less	0.3 or less	0	0
ence	Copper	(mg Cu/ 🦉)	1.0 or less	0.1 or less	0	
items	Sulfide ion	(mm m 62=1 //)	not to be	not to be	0	
	Sullide Ion	(mg S²-/ //)	detected	detected	0	
	Ammonium ion	(mg NH₄*/ ∉)	0.3 or less	0.1 or less	0	
	Residual chlorine	(mg Cl/ 🦉)	0.25 or less	0.3 or less	0	
	Free carbon dioxid	le (mg CO ₂ / (/)	0.4 or less	4.0 or less	0	
	Ryzner stability inc	dex	-	-	0	0

Reference : Guideline of Water Quality for Refrigeration and Air Conditioning Equipment. (JRA GL02E-1994)

U11 2nd

In order to keep the water quality within such standards, you are kindly requested to conduct bleeding-off by overflow and periodical water quality tests, and use inhibitors to suppress condensation or corrosion. Since piping may be corroded by some kinds of inhibitor, consult an appropriate water treatment expert for proper water treatment.


4) Pump interlock

Operating the heat source unit without circulation water inside the water piping can cause a trouble. Be sure to provide interlocking for the unit operation and water circuit. Since the terminal block is being provided inside the unit, use it as required.

5) Handling plate heat exchangers for heat-source units

<Designing the piping system>

- Install a strainer (50 mesh or finer recommended) near the heat-source unit on the inlet side of the hot/cold water pipe and cooling-water pipe (hereafter referred to as water pipes) to prevent an infiltration of foreign materials of solid nature, such as dirt and sand, into the plate heat exchanger.
- Depending on the water quality, scale may form inside plate heat exchangers. Plate heat exchangers must be chemically cleaned regularly to remove scale formation. Install sluice valves on the water pipes, and provide ports for connecting a pipe between the sluice valves and the heat-source unit for chemical cleaning.
- On both the inlet and outlet sides of water pipes, provide a plug to remove trapped air and water (also to be used for cleaning heat-source units and for purging water before a period of nonuse in winter or at the end of an air conditioning season). Also, provide automatic air-vent valves where air is likely to be trapped (such as a pipe that runs vertically).
- In addition to installing the above-mentioned strainers, install a cleanable strainer near the pump pipe inlet.
- Keep the pipes properly insulated and take an appropriate measure against humidity to minimize heat loss and prevent freeze damage in severe cold climate.
- If the system is stopped during winter or at night in subfreezing temperatures, take appropriate measures to protect pipes from freezing (i.e., pipe purging and use of water-circulation pump or heater) and prevent resultant damage to the plate heat exchanger.

<Test run>

- Before performing a test run, check that the piping system is properly installed, especially the strainers, air-vents, automatic water-supply valves, expansion tanks, and systems.
- After the pipe system is filled with water, first, operate the pump alone to check the system for trapped air and adjust the water flow rate to prevent the plate heat exchanger from freezing. Take into consideration the water pressure loss before and after each heat-source unit, and make sure the water flow rate falls within the design water flow rate range. Stop the test run and correct any problems found, if any.
- At the completion of a test run, check the strainer at the inlet pipe of the heat-source unit and clean it as necessary.

<Daily maintenance>

- · Controlling the water quality
- Plate heat exchangers cannot be disassembled for cleaning and have no replaceable parts. Watch the water quality to prevent corrosion and scale formation. The quality of the water to be used for plate heat exchangers must meet the water quality guidelines JRA GL-02-1994 specified by Japan Refrigeration and Air conditioning Industry Association (JRAIA). (Refer to 3) Water treatment and water quality control.)
- Controlling the circulation water flow rate
 Insufficient water rate will cause freeze damage to plate heat exchangers. Check for insufficient water flow caused by
 clogged strainer, trapped air in the system, or malfunction of the circulation water pump. Flow rate can also be checked
 by measuring the temperature or pressure difference between the inlet and outlet of plate heat exchangers.
 If the temperature or pressure difference goes outside of the specified range, stop the operation, remove the cause of
 the problem, and resume operation.
- What to do when the freeze protection trips
 If the freeze protection trips during operation, be sure to remove its cause before resuming operation. Tripped freeze
 protection indicates that the system is partially frozen, and resuming operation without removing the cause of the
 problem will result in freeze damage to plate heat exchangers and/or pipes as well as resultant refrigerant leaks and
 infiltration of water into the refrigerant circuit.

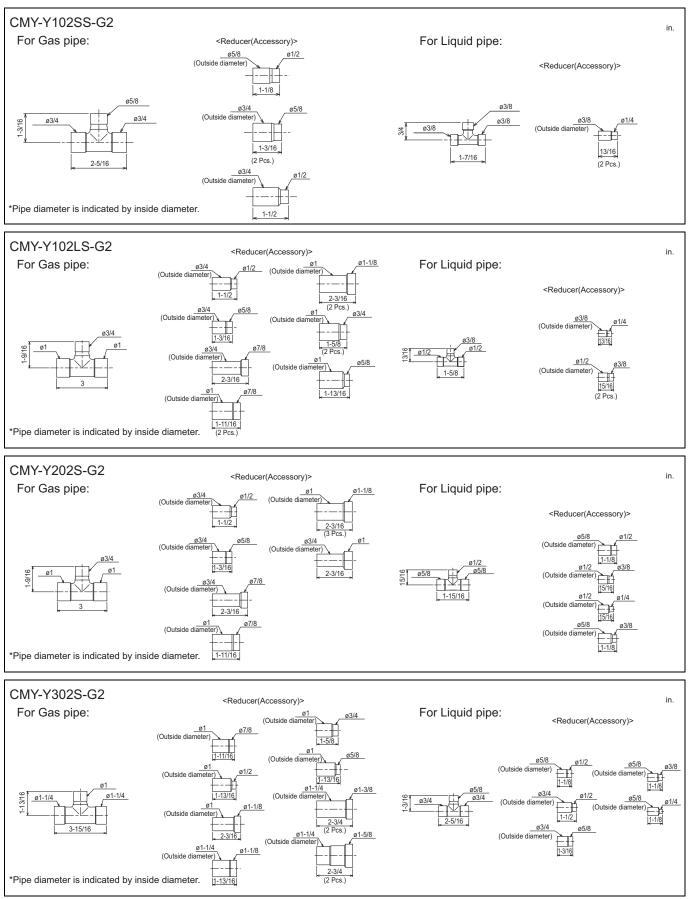
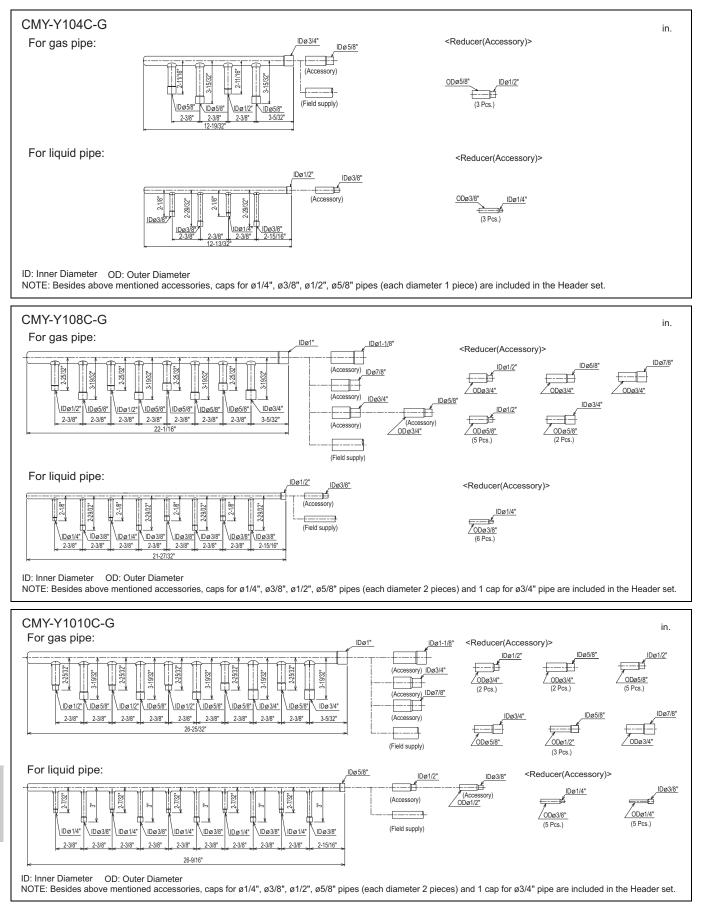

<Maintaining plate heat exchangers>

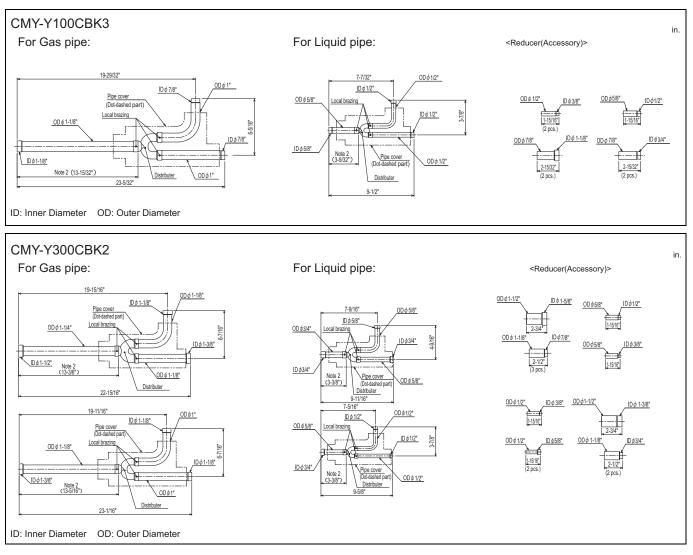
Plate heat exchangers must be maintained in a planned and periodical manner to prevent scale formation, which may cause performance loss or decrease water flow rate that result in freeze damage to the plate heat exchanger.

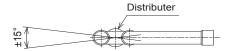
- · Check the following items before the operating season.
 - 1. Check that the water quality meets the specified water quality.
 - 2. Clean the strainers.
 - 3. Check that the water flow rate is adequate.
 - 4. Check for proper operation (e.g., pressure, flow rate, inlet/outlet temperatures).
- Plate heat exchangers cannot be disassembled for cleaning. Clean them in the following way.
 - 1. Make sure that there is a pipe connection port on the water inlet pipe.
 - Use formic acid, citric acid, oxalic acid, acetic acid, or phosphoric acid diluted to 5% to clean plate heat exchangers. Do not use highly corrosive acids, such as hydrochloric acid, sulfuric acid, or nitric acid.
 - 2. Make sure that valves are installed before the inlet connection port and after the outlet connection port.
 - 3. Connect a pipe for circulating cleaning solution to the inlet/outlet pipes of the plate heat exchanger, fill the plate heat exchanger with cleaning solution at a temperature between 50 and 60°C, and circulate the cleaning solution with a pump for 2 to 5 hours. The cleaning time will depend on the temperature of the cleaning solution and the degree of scale formation. Use the color of the cleaning solution as a guide to determine how long the system needs to be cleaned.
 - 4. When done, discharge the cleaning solution out of the plate heat exchanger, fill it with sodium hydrate (NaOH) or sodium bicarbonate (NaHCO₃) diluted with water to 1 to 2%, and let the solution be circulated for 15 to 20 minutes until the cleaning solution is neutralized.
 - 5. After neutralizing the cleaning solution, thoroughly rinse the plate heat exchanger with clean water.
 - 6. When using a commercially available cleaning solution, make sure to use a solution not corrosive to stainless steel or copper.
 - 7. Consult the cleaning solution manufacture for details.
- At the completion of cleaning, check the system for proper operation.


8-1. JOINT

CITY MULTI units can be easily connected by using Joint sets and Header sets provided by Mitsubishi Electric. Four kinds of Joint sets are available for use. Refer to section 3 in "System Design" or the Installation Manual that comes with the Joint set for how to install the Joint set.

8-2. HEADER


CITY MULTI units can be easily connected by using Joint sets and Header sets provided by Mitsubishi Electric. Three kinds of Header sets are available for use. Refer to section 3 in "System Design" or the Installation Manual that comes with the Header set for how to install the Header set.


WY 575V

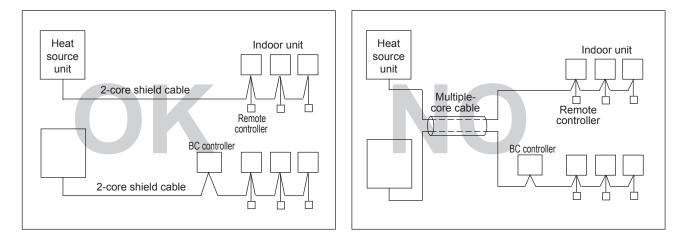
8-3. OUTDOOR TWINNING KIT

The following optional Outdoor Twinning Kit is needed to use to combine multiple refrigerant pipes. Refer to the chapter entitled System Design Section for the details of selecting a proper twinning kit.

Note 1. Reference the attitude angle of the branch pipe below the fig.

The angle of the branch pipe for hign pressure is within ±15° against the horizontal plane.

- 2. Use the attached pipe to braze the port-opening of the distributer.
- 3. Pipe diameter is indicated by inside diameter.
- 4. Only use the Twinning pipe by Mitsubishi (optional parts) .


CITY MULTI SYSTEM DESIGN WY SERIES - 575V

1.	Electrical work	4 - 398
	1-1.General cautions	4 - 398
	1-2.Power supply for Indoor unit and Heat source unit	4 - 399
	1-3.Power cable specifications	
	1-4.Power supply examples	
2.	M-NET control	4 - 406
	2-1.Transmission cable length limitation	4 - 406
	2-2.Transmission cable specifications	
	2-3.System configuration restrictions	
	2-4.Address setting	
3.	Piping Design	4 - 424
	3-1.R410A Piping material	4 - 424
	3-2.Piping Design	
	3-3.Refrigerant charging calculation	
4.	Installation	4 - 430
	4-1.General requirements for installation	4 - 430
	4-2.Spacing	
	4-3.Caution on selecting heat source unit	
	4-4.Piping direction	

1. Electrical work

1-1. General cautions

- ① Follow ordinance of your governmental organization for technical standard related to electrical equipment, wiring regulations, and guidance of each electric power company.
- ② Wiring for control (hereinafter referred to as transmissioncable) shall be (50mm[1-5/8in] or more) apart from power source wiring so that it is not influenced by electric noise from power source wiring. (Do not insert transmission cable and power source wire in the same conduit.)
- ③ Be sure to provide designated grounding work to heat source unit.
- ④ Give some allowance to wiring for electrical part box of indoor and heat source unit, because the box is sometimes removed at the time of service work.
- ⑤ Never connect 100V, 208-230V, 575V power source to terminal block of transmission cable. If connected, electrical parts will be damaged.
- Ise 2-core shield cable for transmission cable. If transmission cables of different systems are wired with the same multiplecore cable, the resultant poor transmitting and receiving will cause erroneous operations.
- $\ensuremath{\textcircled{O}}$ When extending the transmission line, make sure to extend the shield cable as well.

1-2. Power supply for Indoor unit and Heat source unit

1-2-1. Electrical characteristics of Indoor unit

				Indoor Fan Motor		notor rated output
Model		Indo	or Unit		IF	M
Model	Hz	Volts	Voltage range	MCA(A)	Output(kW)	FLA(A)
PLFY-P08NCMU-E				0.29 / 0.29	0.015 / 0.015	0.23 / 0.23
PLFY-P12NCMU-E				0.35 / 0.35	0.020 / 0.020	0.28 / 0.28
PLFY-P15NCMU-E				0.35 / 0.35	0.020 / 0.020	0.28 / 0.28
PLFY-P08NBMU-E2				0.39 / 0.39	0.050 / 0.050	0.31 / 0.31
PLFY-P12NBMU-E2	col 1-	200 / 2201/	100 to 2521/	0.39 / 0.39	0.050 / 0.050	0.31 / 0.31
PLFY-P15NBMU-E2	60Hz	208 / 230V	198 to 253V	0.39 / 0.39	0.050 / 0.050	0.31 / 0.31
PLFY-P18NBMU-E2				0.42 / 0.42	0.050 / 0.050	0.33 / 0.33
PLFY-P24NBMU-E2				0.59 / 0.59	0.050 / 0.050	0.47 / 0.47
PLFY-P30NBMU-E2				0.63 / 0.63	0.050 / 0.050	0.50 / 0.50
PLFY-P36NBMU-E2				1.09 / 1.09	0.120 / 0.120	0.87 / 0.87
PMFY-P06NBMU-E				0.25 / 0.25	0.028 / 0.028	0.20 / 0.20
PMFY-P08NBMU-E	0011	000 (000) (100 10 0501/	0.25 / 0.25	0.028 / 0.028	0.20 / 0.20
PMFY-P12NBMU-E	60Hz	208 / 230V	198 to 253V	0.26 / 0.26	0.028 / 0.028	0.21 / 0.21
PMFY-P15NBMU-E				0.33 / 0.33	0.028 / 0.028	0.26 / 0.26
PEFY-P06NMAU-E3				1.05 / 1.05	0.085 / 0.085	0.84 / 0.84
PEFY-P08NMAU-E3	-			1.05 / 1.05	0.085 / 0.085	0.84 / 0.84
PEFY-P12NMAU-E3				1.20 / 1.20	0.085 / 0.085	0.96 / 0.96
PEFY-P15NMAU-E3	-			1.45 / 1.45	0.085 / 0.085	1.16 / 1.16
PEFY-P18NMAU-E3				1.56 / 1.56	0.085 / 0.085	1.25 / 1.25
PEFY-P24NMAU-E3	60Hz	208 / 230V	188 to 253V	2.73 / 2.73	0.121 / 0.121	2.18 / 2.18
PEFY-P27NMAU-E3				2.73 / 2.73	0.121 / 0.121	2.18 / 2.18
PEFY-P30NMAU-E3				2.73 / 2.73	0.121 / 0.121	2.18 / 2.18
PEFY-P36NMAU-E3				3.32 / 3.32	0.244 / 0.244	2.66 / 2.66
PEFY-P48NMAU-E3				3.41 / 3.41	0.244 / 0.244	2.73 / 2.73
PEFY-P54NMAU-E3	-			3.31 / 3.31	0.244 / 0.244	2.65 / 2.65
PEFY-P06NMSU-E				0.47 / 0.50	0.023 / 0.023	0.32 / 0.31
PEFY-P08NMSU-E				0.47 / 0.50	0.023 / 0.023	0.41 / 0.39
PEFY-P12NMSU-E	-			0.68 / 0.74	0.032 / 0.032	0.46 / 0.43
PEFY-P15NMSU-E				1.20 / 1.33	0.130 / 0.130	0.47 / 0.45
PEFY-P18NMSU-E	1			1.20 / 1.33	0.130 / 0.130	0.64 / 0.60
PEFY-P24NMSU-E	1			1.57 / 1.73	0.180 / 0.180	0.88 / 0.83
PEFY-P15NMHU-E2	1			1.63 / 1.50	0.17	1.30 / 1.20
PEFY-P18NMHU-E2			188 to 253V	1.63 / 1.50	0.17	1.30 / 1.20
PEFY-P24NMHU-E2	60Hz	208 / 230V		2.11 / 1.83	0.25	1.69 / 1.46
PEFY-P27NMHU-E2	1			2.35 / 2.13	0.26	1.88 / 1.70
PEFY-P30NMHU-E2	1			2.70 / 2.45	0.31	2.16 / 1.96
PEFY-P36NMHU-E2	1			4.16 / 3.67	0.49	3.32 / 2.94
PEFY-P48NMHU-E2	1			4.16 / 3.67	0.49	3.32 / 2.94
PEFY-P54NMHU-E2	1			4.18 / 3.69	0.55	3.34 / 2.95
PEFY-P72NMHSU-E	1			7.7	0.87	6.2
PEFY-P96NMHSU-E	1		187 to 253V	8.2	0.87	6.6

Symbols: MCA: Minimum Circuit Ampacity (=1.25xFLA) FLA: Full Load Amps IFM: Indoor Fan Motor Output: Fan motor rated output

				Indoor Fan Motor	•	notor rated output
Model		Indo	or Unit		IFM	
WOUEI	Hz	Volts	Voltage range	MCA(A)	Output(kW)	FLA(A)
PCFY-P15NKMU-E				0.44 / 0.44	0.090 / 0.090	0.35 / 0.35
PCFY-P24NKMU-E	60Hz	208 / 230V	198 to 253V	0.52 / 0.52	0.095 / 0.095	0.41 / 0.41
PCFY-P30NKMU-E	0012	20872300	196 10 255 V	1.22 / 1.22	0.160 / 0.160	0.97 / 0.97
PCFY-P36NKMU-E				1.22 / 1.22	0.160 / 0.160	0.97 / 0.97
	ſ	1		0.40.40.40		0.45.40.45
PKFY-P06NBMU-E2				0.19 / 0.19	0.008 / 0.008	0.15 / 0.15
PKFY-P08NHMU-E2				0.38 / 0.38	0.030 / 0.030	0.30 / 0.30
PKFY-P12NHMU-E2				0.38 / 0.38	0.030 / 0.030	0.30 / 0.30
PKFY-P15NHMU-E2	60Hz	208 / 230V	198 to 253V	0.38 / 0.38	0.030 / 0.030	0.30 / 0.30
PKFY-P18NHMU-E2				0.38 / 0.38	0.030 / 0.030	0.30 / 0.30
PKFY-P24NKMU-E2				0.63 / 0.63	0.056 / 0.056	0.50 / 0.50
PKFY-P30NKMU-E2				0.63 / 0.63	0.056 / 0.056	0.50 / 0.50
PFFY-P06NEMU-E		1	1	0.32 / 0.34	0.015 / 0.015	0.25 / 0.27
PFFY-P08NEMU-E		208 / 230V	188 to 253V	0.32 / 0.34	0.015 / 0.015	0.25 / 0.27
PFFY-P12NEMU-E				0.34 / 0.38	0.018 / 0.018	0.27 / 0.30
PFFY-P15NEMU-E	60Hz			0.40 / 0.44	0.030 / 0.030	0.32 / 0.35
PFFY-P18NEMU-E				0.48 / 0.53	0.035 / 0.035	0.38 / 0.42
PFFY-P24NEMU-E				0.59 / 0.64	0.063 / 0.063	0.47 / 0.51
PFFY-P06NRMU-E				0.32 / 0.34	0.015 / 0.015	0.25 / 0.27
PFFY-P08NRMU-E				0.32 / 0.34	0.015 / 0.015	0.25 / 0.27
PFFY-P12NRMU-E	60Hz	208 / 230V	188 to 253V	0.34 / 0.38	0.018 / 0.018	0.27 / 0.30
PFFY-P15NRMU-E	- 00HZ	208/2300	188 10 253 0	0.40 / 0.44	0.030 / 0.030	0.32 / 0.35
PFFY-P18NRMU-E				0.48 / 0.53	0.035 / 0.035	0.38 / 0.42
PFFY-P24NRMU-E				0.59 / 0.64	0.063 / 0.063	0.47 / 0.51
		•				
PVFY-P12NAMU-E				3.00 / 3.00	0.121 / 0.121	2.4 / 2.4
PVFY-P18NAMU-E				3.00 / 3.00	0.121 / 0.121	2.4 / 2.4
PVFY-P24NAMU-E			3.00 / 3.00	0.121 / 0.121	2.4 / 2.4	
PVFY-P30NAMU-E	60Hz	208 / 230V	188 to 253V	4.13 / 4.13	0.244 / 0.244	3.3 / 3.3
PVFY-P36NAMU-E				4.13 / 4.13	0.244 / 0.244	3.3 / 3.3
PVFY-P48NAMU-E				5.63 / 5.63	0.430 / 0.430	4.5 / 4.5
PVFY-P54NAMU-E				5.63 / 5.63	0.430 / 0.430	4.5 / 4.5

Symbols: MCA: Minimum Circuit Ampacity (=1.25xFLA) FLA: Full Load Amps IFM: Indoor Fan Motor Output: Fan motor rated output

1-2-2. Electrical characteristics of Heat source unit at cooling mode

Symbols: MCA: Minimum Circuit Ampacity SC: Starting Current

PQHY-P-Z(S)KMU

MOCP: Maximum Over Current Protection

		Heat source unit			Compres	sor			
Model	Unit Combination		1			Max.CKT.			
		Hz	Volts	Voltage range	MCA(A)	BKR(A)	MOCP(A)	Output(kW)	SC(A)
PQHY-P72ZKMU-A	-				9	15	15	4.3	7
PQHY-P96ZKMU-A	-	1			12	15	20	6.0	7
PQHY-P120ZKMU-A	-	1			13	20	22	7.7	7
PQHY-P144ZSKMU-A	PQHY-P72ZKMU-A	1			9	15	15	4.3	7
	PQHY-P72ZKMU-A				9	15	15	4.3	7
PQHY-P168ZSKMU-A	PQHY-P72ZKMU-A	1			9	15	15	4.3	7
	PQHY-P96ZKMU-A				12	15	20	6.0	7
PQHY-P192ZSKMU-A	PQHY-P96ZKMU-A	1			12	15	20	6.0	7
	PQHY-P96ZKMU-A				12	15	20	6.0	7
PQHY-P216ZSKMU-A	PQHY-P96ZKMU-A	1			12	15	20	6.0	7
	PQHY-P120ZKMU-A				13	20	22	7.7	7
PQHY-P240ZSKMU-A	PQHY-P120ZKMU-A	1			13	20	22	7.7	7
	PQHY-P120ZKMU-A				13	20	22	7.7	7
PQHY-P264ZSKMU-A	PQHY-P72ZKMU-A	60Hz	575V	518 to 633V	9	15	15	4.3	7
	PQHY-P96ZKMU-A	00112	5750	510 10 055 0	12	15	20	6.0	7
	PQHY-P96ZKMU-A				12	15	20	6.0	7
PQHY-P288ZSKMU-A	PQHY-P96ZKMU-A	1			12	15	20	6.0	7
	PQHY-P96ZKMU-A				12	15	20	6.0	7
	PQHY-P96ZKMU-A				12	15	20	6.0	7
PQHY-P312ZSKMU-A	PQHY-P96ZKMU-A	1			12	15	20	6.0	7
	PQHY-P96ZKMU-A				12	15	20	6.0	7
	PQHY-P120ZKMU-A				13	20	22	7.7	7
PQHY-P336ZSKMU-A	PQHY-P96ZKMU-A	1			12	15	20	6.0	7
	PQHY-P120ZKMU-A				13	20	22	7.7	7
	PQHY-P120ZKMU-A	1			13	20	22	7.7	7
PQHY-P360ZSKMU-A	PQHY-P120ZKMU-A	1			13	20	22	7.7	7
	PQHY-P120ZKMU-A	1			13	20	22	7.7	7
	PQHY-P120ZKMU-A				13	20	22	7.7	7

Thickness of wire for main power	r supply canacities of the	switch and system impedance
Thickness of whe for main power	supply, capacities of the	switch and system impedance

	Model	Minimum wire thickness (mm ² /AWG)		nm ² /AWG)	Breaker for current leakage	Local Switch (A)		Breaker for
	Woder	Main cable	Branch	Ground	breaker for current leakage	Capacity	Fuse	wiring (NFB)
Heat source unit	PQHY-P72ZKMU-A	2.1/14	-	2.1/14	15A 30mA or 100mA 0.1sec. or less	15	15	15
	PQHY-P96ZKMU-A	2.1/14	-	2.1/14	15A 30mA or 100mA 0.1sec. or less	15	15	15
	PQHY-P120ZKMU-A	3.3/12	-	3.3/12	20A 30mA or 100mA 0.1sec. or less	20	20	20
Total operating	F0 = 15 or less *1	2.1/14	2.1/14	2.1/14	15A current sensitivity *2	15	15	15
current of	F0 = 20 or less *1	3.3/12	3.3/12	3.3/12	20A current sensitivity *2	20	20	20
the indoor unit	F0 = 30 or less *1	5.3/10	5.3/10	5.3/10	30A current sensitivity *2	30	30	30

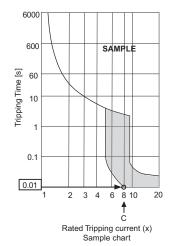
*1 Please take the larger of F1 or F2 as the value for F0.

F1 = Total operating maximum curent of the indoor units × 1.2

F2 = {V1 × (Quantity of Type1)/C} + {V1 × (Quantity of Type2)/C} + {V1 × (Quantity of Type3)/C} + {V1 × (Quantity of Others)/C}

	Indoor unit	V1	V2
Type1	PLFY-NBMU, PMFY-NBMU, PEFY-NMSU, PCFY-NKMU, PKFY-NHMU, PKFY-NKMU	18.6	2.4
Type2	PEFY-NMAU	38	1.6
Туре3	PEFY-NMHSU	13.8	4.8
Others	Other indoor unit	0	0

C: Multiple of tripping current at tripping time 0.01s


Please pick up "C" from the tripping characteristic of the breaker.

<Example of "F2" calculation>

*Condition PEFY-NMSU × 4 + PEFY-NMAU × 1, C = 8 (refer to right sample chart) F2 = 18.6 × 4/8 + 38 × 1/8

= 14.05

→16 A breaker (Tripping current = 8 × 16 A at 0.01s)

*2 Current sensitivity is calculated using the following formula.

G1 = (V2 × Quantity of Type1) + (V2 × Quantity of Type2) + (V2 × Quantity of Type3) + (V2 × Quantity of Others) + (V3 × Wire length [km])

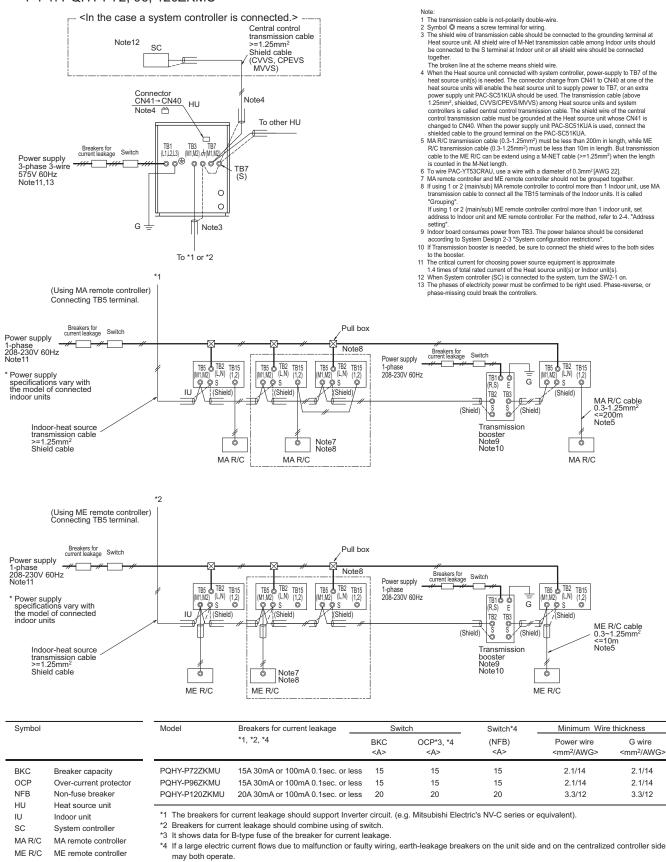
G1	Current sensitivity		Wire thickness	V3
30 or less	30 mA 0.1sec or less		1.5 mm ²	48
100 or less	100 mA 0.1sec or less		2.5 mm ²	56
		-	4.0 mm ²	66

1. Use dedicated power supplies for the heat source unit and indoor unit. Ensure OC and OS are wired individually.

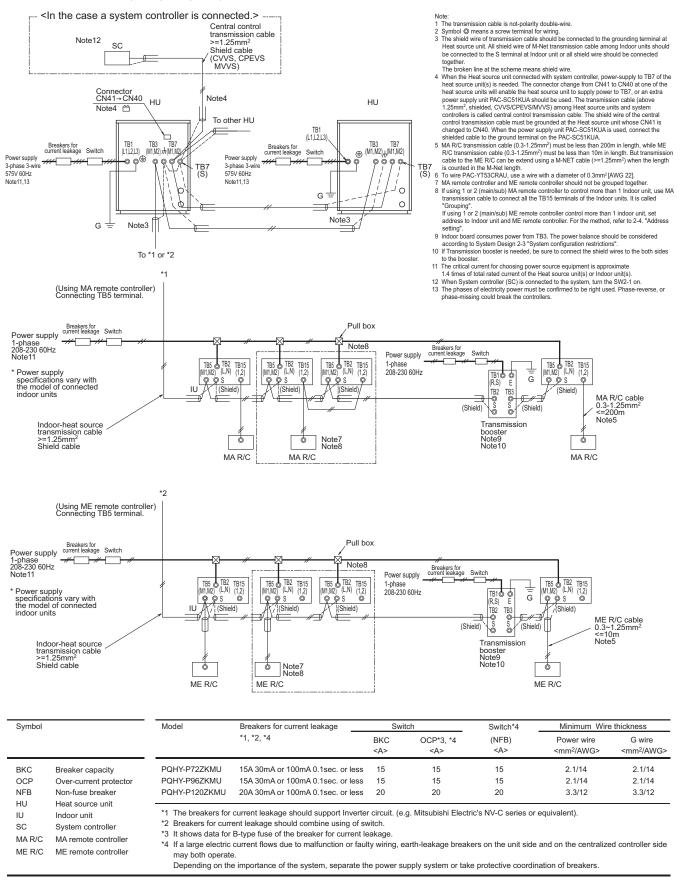
- 2. Bear in mind ambient conditions (ambient temperature, direct sunlight, rain water, etc.) when proceeding with the wiring and connections.
- 3. The wire size is the minimum value for metal conduit wiring. If the voltage drops, use a wire that is one rank thicker in diameter. Make sure the power-supply voltage does not drop more than 10%. Make sure that the voltage imbalance between the phases is 2% or less.
- 4. Specific wiring requirements should adhere to the wiring regulations of the region.
- 5. Power supply cords of parts of appliances for heat source use shall not be lighter than polychloroprene sheathed flexible cord (design 245 IEC57). For example, use wiring such as YZW.
- 6. A switch with at least 3 mm [1/8 in.] contact separation in each pole shall be provided by the Air Conditioner installer.

• Be sure to use specified wires for connections and ensure no external force is imparted to terminal connections. If connections are not fixed firmly, heating or fire may result.

• Be sure to use the appropriate type of overcurrent protection switch. Note that generated overcurrent may include some amount of direct current.

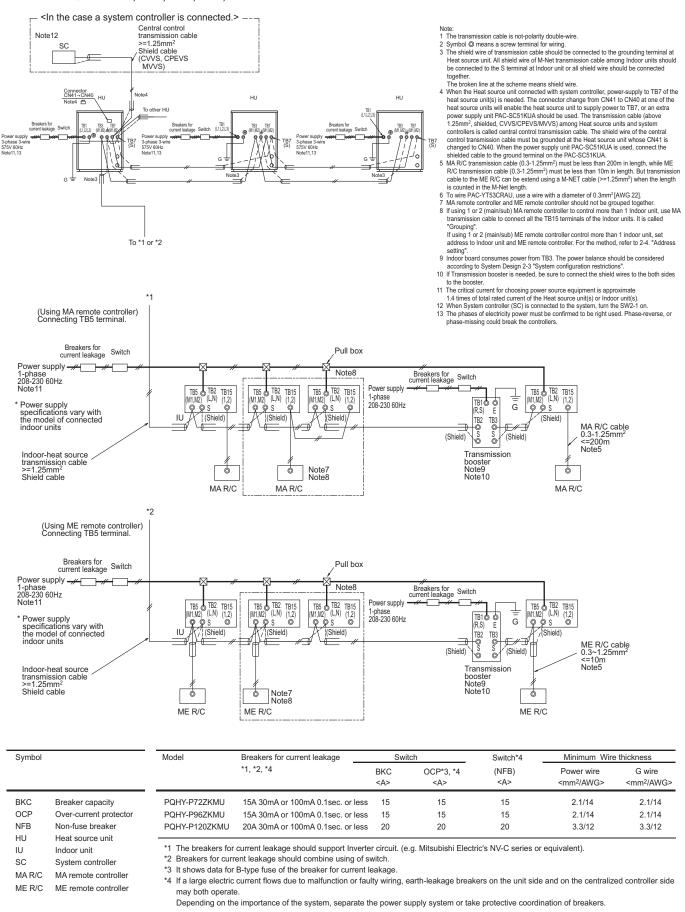

S.D. WY 575V

• The breakers for current leakage should support Inverter circuit. (e.g. Mitsubishi Electric's NV-C series or equivalent). If no earth leakage breaker is installed, it may cause an electric shock.


- Breakers for current leakage should combine using of switch.
- Do not use anything other than a breaker with the correct capacity. Using a breaker of too large capacity may cause malfunction or fire.
- If a large electric current flows due to malfunction or faulty wiring, earth-leakage breakers on the unit side and on the upstream side of the power supply system may both operate.
 Depending on the importance of the system, separate the power supply system or take protective coordination of breakers.

1-4. Power supply examples

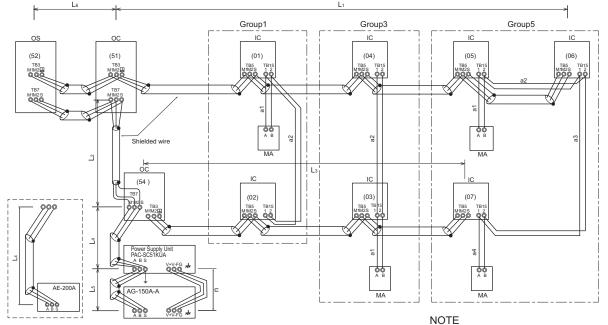
The local standards and/or regulations is applicable at a higher priority. 1-4-1. PQHY-P72, 96, 120ZKMU


The local standards and/or regulations is applicable at a higher priority. 1-4-2. PQHY-P144, 168, 192, 216, 240ZSKMU

MEE15K058

S.D. WY 575V

The local standards and/or regulations is applicable at a higher priority. 1-4-3. PQHY-P264, 288, 312, 336, 360ZSKMU

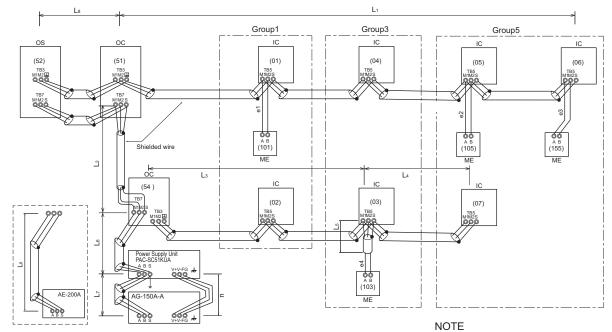

S.D. WY 575V

2-1-1. Using MA Remote controller

MA remote controller refers to Simple MA remote controller and wireless remote controller.

Long transmission cable causes voltage down, therefore, the length limitation should be obeyed to secure proper transmission.

Max. length via Heat source (M-NET cable)	L1+L2+L3, L1+L2+L4+L5, L3+L4+L5, L6+L2+L3, L6+L2+L4+L5	<=500m[1640ft.]	1.25mm ² [AWG16] or thicker
Max. length to Heat source (M-NET cable)	L1+L6, L3, L2+L4+L6, L5	<=200m[656ft.]	1.25mm ² [AWG16] or thicker
Max. length from MA to Indoor for each group	a1+a2, a1+a2+a3+a4	<=200m[656ft.]	0.3-1.25 mm ² [AWG22-16]
24VDC to AG-150A-A	n	<=50m[164ft.]	0.75-2.0 mm ² [AWG18-14]


OC, OS: Heat source unit controller; IC: Indoor unit controller; MA: MA remote controller

2-1-2. Using ME Remote controller

ME remote controller refers to Smart ME Controller.

Long transmission cable causes voltage down, therefore, the length limitation should be obeyed to secure proper transmission.						
Max. length via Heat source (M-NET cable)	L1+L2+L3+L4, L1+L2+L6+L7, L1+L2+L3+L5, L3+L4+L6+L7, L8+L2+L3+L4, L8+L2+L3+L5, L8+L2+L6+L7	<=500m[1640ft.]	1.25mm ² [AWG16] or thicker			
Max. length to Heat source (M-NET cable)	L1+L8, L3+L4, L2+L6+L8, L7, L3+L5	<=200m[656ft.]	1.25mm ² [AWG16] or thicker			
Max. length from ME to Indoor	e1, e2+e3, e4	<=10m[32ft.]*1	0.3-1.25 mm2 [AWG22-16]*1			
24VDC to AG-150A-A	n	<=50m[164ft.]	0.75-2.0 mm ² [AWG18-14]			

*1. If the length from ME to Indoor exceed 10m, use 1.25 mm² [AWG16] shielded cable, but the total length should be counted into Max. length via Heat source.

OC, OS: Heat source unit controller; IC: Indoor unit controller; ME: ME remote controller

Do not daisy-chain remote controllers.

Do not daisy-chain remote controllers.

2-2. Transmission cable specifications

	Transmission cables (Li)	ME Remote controller cables	MA Remote controller cables	
Type of cable	Shielding wire (2-core) Sheathed 2-core cable (unshielded) CVVS, CPEVS or MVVS CVV		cable (unshielded)	
Cable size	More than 1.25mm ² [AWG16]	WG16] 0.3~1.25mm ² [AWG22~16] 0.3~1.25mm ² [,		
Remarks —		When 10m [32ft] is exceeded, use cables with the same specification as transmission cables. Max length : 200m [656ft]		

*1 To wire PAC-YT53CRAU, use a wire with a diameter of 0.3 mm^2 [AWG22]

CVVS, MVVS: PVC insulated PVC sheathed shielded control cable CPEVS: PE insulated PVC sheathed shielded communication cable CVV: PVC insulated PVC sheathed control cable

2-3. System configuration restrictions

2-3-1. Common restrictions for the CITYMULTI system

For each Outdoor/Heat source unit, the maximum connectable quantity of Indoor unit is specified at its Specifications table.

- A) 1 Group of Indoor units can have 1-16 Indoor units;
- B) Maximum 2 remote controllers for 1 group;
 - *MA/ME remote controllers cannot be present together in 1group.
 - *To wire PAC-YT53CRAU, use a wire with a diameter of 0.3 mm² [AWG22]
- C) 1 LOSSNAY unit can interlock maximum 16 Indoor units; 1 Indoor unit can interlock only 1 LOSSNAY unit.
- D) Maximum 3 System controllers are connectable when connecting to TB3 of the Outdoor/Heat source unit.
- E) Maximum 6 System controllers are connectable when connecting to TB7 of the Outdoor/Heat source unit, if the transmission power is supplied by the Outdoor/Heat source unit. (Not applicable to the PUMY model and PUHY/PURY-TLMU/TKMU model)
- F) 4 System controllers or more are connectable when connecting to TB7 of the Outdoor/Heat source unit, if the transmission power is supplied by the power supply unit PAC-SC51KUA. Details refer to 2-3-3-C.
 *System controller connected as described in D) and E) would have a risk that the failure of connected Outdoor/Heat source unit would stop power supply to the System controller.

2-3-2. Ensuring proper communication power and the number of connected units for M-NET

In order to ensure proper communication among Outdoor/Heat source unit, Indoor unit, LOSSNAY, and Controllers, the transmission power situation for the M-NET should be observed. In some cases, Transmission booster should be used. Taking the power consumption of Indoor unit sized P06-P54 as 1, the equivalent power consumption or supply of others are listed at Table 1 and Table 2.

Both the transmission line for centralized controller and indoor-outdoor transmission line must meet the conditions listed below. (Both conditions a) and b) must be met.)

a) [Total equivalent power consumption] ≤ [The equivalent power supply]

b) [Total equivalent number of units] \leq [40]

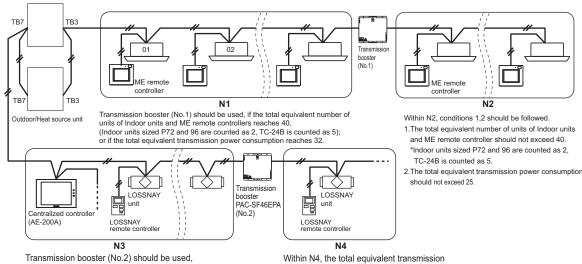
Category	Model	The equivalent power consumption	The equivalent number of units
Indoor unit	Sized P06-P54	1	1
	Sized P72, P96	2	2
BC controller	СМВ	2	1
	P36NMU-E-BU	6	1
PWFY	P36NMU-E2-AU	1	1
	P72NMU-E2-AU	5	1
MA remote controller/LOSSNAY	PAC-YT53CRAU PAR-FA32MA LGH-F-RX5-E1 PZ-60DR-E PZ-41SLB PZ-52SF	0	0
ME remote controller	PAR-U01MEDU PAC-IF01AHC-J	0.5	1
	AE-200A AE-50A EW-50A	0	0
System controller	AG-150A-A EB-50GU-A	0.5	1
	TC-24B	1.5	5
	PAC-YG60MCA PAC-YG66DCA PAC-YG63MCA	0.25	1
ON/OFF controller	PAC-YT40ANRA	1	1
MN converter	CMS-MNG-E	2	1
Outdoor/Heat source unit	TB7 power consumption	0	0
	MAC-333IF-E	0	0
M-NET adapter	PAC-IF01MNT-E	1	2

Table 1 The equivalent power consumption and the equivalent number of units

Table 2 The equivalent power supply

Category	Model	The equivalent power supply
Transmission Booster	PAC-SF46EPA	25
Power supply unit	PAC-SC51KUA	5
Expansion controller	PAC-YG50ECA	6
BM ADAPTER	BAC-HD150	6
System controller	AE-200A/AE-50A	0 *1
System controller	EW-50A	1.5 *1
	Connector TB3 and TB7 total *	32 (except S series)/12 (S series)
Outdoor/Heat source unit	Connector TB7 only	6 (except S series and TLMU/TKMU)
	Connector TB7 only (TLMU/TKMU)	0

*IF PAC-SC51KUA is used to supply power at TB7 side, no power supply need from Outdoor/Heat source unit at TB7, Connector TB3 itself will therefore have 32. Not applicable to the PUMY model.


*1 AE-200A/AE-50A/EW-50A has a built-in function to supply power to the M-NET transmission line. The amount of power that an AE-200A or an AE-50A can supply is equivalent to the power required by an MN converter (CMS-MNG-E) that is used for

maintenance. An MN converter is connectable to EW-50A only when the equivalent power consumption is less than 1.5.

With the equivalent power consumption values and the equivalent number of units in Table 1 and Table 2, PAC-SF46EPA can be designed into the air-conditioner system to ensure proper system communication according to (A), (B), (C).

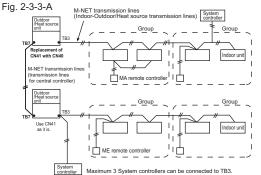
- (A) Firstly, count from TB3 at TB3 side the total equivalent number of units of Indoor units, ME remote controller, and System controllers. If the total equivalent number of units reaches 40, a PAC-SF46EPA should be set. In this case, Indoor units sized P72 and 96 are counted as 2, TC-24B is counted as 5, but MA remote controller(s), PZ-60DR-E, PZ-41SLB, and PZ-52SF are NOT counted.
- (B) Secondly, count from TB7 side to TB3 side the total transmission power consumption. If the total power consumption reaches 32, a PAC-SF46EPA should be set. Yet, if a PAC-SC51KUA or another controller with a built-in power supply, such as PAC-YG50ECA, is used to supply power at TB7 side, count from TB3 side only.
- (C) Thirdly, count from TB7 at TB7 side the total transmission power consumption. If the total power consumption reaches 6, a PAC-SF46EPA should be set. Also, count from TB7 at TB7 side the total equivalent number of units of System controllers, and so on. If the total equivalent number of units reaches 40, a PAC-SF46EPA should be set.

System example

if the total equivalent transmission power consumption reaches 5.

power consumption should not exceed 25.

2-3-3. Ensuring proper power supply to System controller


The power to System controller (excluding AE-200A, AE-50A, EW-50A, BAC-HD150, LM-AP) is supplied via M-NET transmission line. M-NET transmission line at TB7 side is called Centralized control transmission line while one at TB3 side is called Indoor-Outdoor/Heat source transmission line. There are 3 ways to supply power to the System controller.

- A) Connecting to TB3 of the Outdoor/Heat source unit and receiving power from the Outdoor/Heat source unit.
- B) Connecting to TB7 of the Outdoor/Heat source unit and receiving power from the Outdoor/Heat source unit.
- (Not applicable to the PUMY model and PUHY/PURY-TLMU/TKMU model)
- C) Connecting to TB7 of the Outdoor/Heat source unit but receiving power from power supply unit PAC-SC51KUA. System controllers (AE-200A, AE-50A, EW-50A, BAC-HD150, LM-AP) have a built-in function to supply power to the M-NET transmission lines, so no power needs to be supplied to the M-NET transmission lines from the Outdoor/Heat source units or from PAC-SC51KUA.

2-3-3-A. When connecting to TB3 of the Outdoor/Heat source unit and receiving power from the

Outdoor/Heat source unit. Maximum 3 System controllers can be connected to TB3.

If there is more than 1 Outdoor/Heat source unit, it is necessary to replace power supply switch connector CN41 with CN40 on one Outdoor/Heat source unit.

M-NET transmission lines (Indoor-Outdoor/Heat source transmission lines)

MA remote controller

і 📥 ме

Ľ

Group

Group

2-3-3-B. When connecting to TB7 of the Outdoor/Heat source unit and receiving power from the Outdoor/Heat source unit. (Not applicable to the PUMY model and PUHY/PURY-TLMU/TKMU model)

Fig. 2-3-3-B

M-NET tra

Use CN4

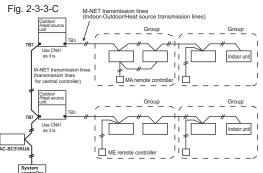
Maximum 6 System controllers can be connected to TB7 and receiving power from the Outdoor/Heat source unit. (Not applicable to the PUMY model and PUHY/PURY-TLMU/TKMU model)

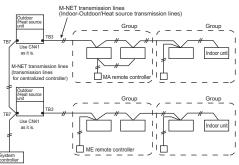
It is necessary to replace power supply switch connector CN41 with CN40 on one Outdoor/Heat source unit.

Note (only for PUHY/PURY model)

· When YLMU/YKMU Outdoor unit model is used, the male power supply connector can be connected to CN40, and the System controller can be connected to TB7 side.

· When the male power supply connector is connected from TLMU/TKMU Outdoor unit to CN40, the power is supplied to TB7 side even when the main power of the TLMU/TKMU outdoor unit is switched off, and the System controller may store an error in the error history and emit an alarm signal.


· If only LOSSNAY units or outdoor units in different refrigerant circuits are connected to TB7 side, the male power supply connector can be connected from TLMU/TKMU outdoor unit to CN40.


2-3-3-C. When connecting to TB7 of the Outdoor/Heat source unit but receiving power from PAC-SC51KUA.

When using PAC-SC51KUA to supply transmission power, the power supply connector CN41 on the Outdoor/Heat source units should be kept as it is. It is also a factory setting. 1 PAC-SC51KUA supports maximum 1 AG-150A-A or Use CN4 as it is 1 EB-50GU-A unit due to the limited power 24VDC at its TB3. -NET tra However, 1 PAC-SC51KUA supplies transmission power at its TB2 equal to 5 Indoor units, which is referable at Table 2. Outdoo /Heat so If PZ-52SF, System controller, ON/OFF controller connected to TB7 consume transmission power more than 5 (Indoor units), Use CN4 Transmission booster PAC-SF46EPA is needed. PAC-SF46EPA supplies transmission power equal to 25 Indoor units. AC-SC51K Fig. 2-3-3-D ■AG-150A-A/EB-50GU-A*1 are recommended to connect to TB7 because it performs back-up to a number of data In an air conditioner system has more than 1 Outdoor/Heat source units. AG-150A-A/EB-50GU-A a risk that the connected Outdoor/Heat source unit failure would stop power supply to AG-150A-A/EB-50GU-A and disrupt the whole system. When applying apportioned electric power function, AG-150A-A/EB-50GU-A are necessary to connected to TB7 and has its own power supply unit PAC-SC51KUA. Note: Power supply unit PAC-SC51KUA is for AG-150A-A/EB-50GU-A. *1: AG-150A-A is an example model of system controllers. M-NET trai

■How to connect system controllers (AE-200A, AE-50A, EW-50A, BAC-HD150, LM-AP) to a given system System controllers (AE-200A, AE-50A, EW-50A, BAC-HD150, LM-AP) have a built-in function to supply power to the M-NET transmission lines, so no power needs to be supplied to the M-NET transmission lines from the Outdoor/Heat source units or from PAC-SC51KUA.

Leave the power supply connector on the Outdoor/Heat source unit connected to CN41 as it is. Refer to 2-3-2 for information about the power-supply capacity of each system controller (EW-50A, BAC-HD150, LM-AP) to the low-level system controllers.

1-phase 208-230V AC power supply is needed.

The power supply unit PAC-SC51KUA is not necessary when connecting only the LM-AP. Yet, make sure to change the power supply changeover connector CN41 to CN40 on the LM-AP.

2-3-5. Power supply to expansion controller

1-phase 100-240VAC power supply is needed.

The power supply unit PAC-SC51KUA is not necessary.

The expansion controller supplies power through TB3, which equals 6 indoor units. (refer to Table 2)

2-3-6. Power supply to BM ADAPTER

1-phase 100-240VAC power supply is needed.

The power supply unit PAC-SC51KUA is not necessary when only BM ADAPTER is connected. Yet, make sure to move the power jumper from CN41 to CN40 on the BM ADAPTER.

2-3-7. Power supply to AE-200A/AE-50A/EW-50A

1-phase 100-240VAC power supply is needed.

The power supply unit PAC-SC51KUA is not necessary when connecting only the AE-200A/AE-50A/EW-50A.

2-4. Address setting

2-4-1. Switch operation

In order to constitute CITY MULTI in a complete system, switch operation for setting the unit address No. and connection No. is required.

 Address No. of heat source unit, indoor unit and ME remote controller. The address No. is set at the address setting board. In the case of WR2 system, it is necessary to set the same No. at the branch No. switch of indoor unit as that of the BC controller

connected. (When connecting two or more branches, use the lowest branch No.)

- ⁽²⁾ Caution for switch operations
 - Be sure to shut off power source before switch setting. If operated with power source on, switch can not operate properly.
 - No units with identical unit address shall exist in one whole air conditioner system. If set erroneously, the system can not operate.
- ③ MA remote controller

• When connecting only one remote controller to one group, it is always the main remote controller. When connecting two remote controllers to one group, set one remote controller as the main remote controller and the other as the sub remote controller.

· The factory setting is "Main".

PAC-YT53CRAU

Setting the dip switches

There are switches on the back of the top case. Remote controller Main/Sub and other function settings are performed using these switches. Ordinarily, only change the Main/Sub setting of SW1. (The factory settings are ON for SW1, 3, and 4 and OFF for SW2.)

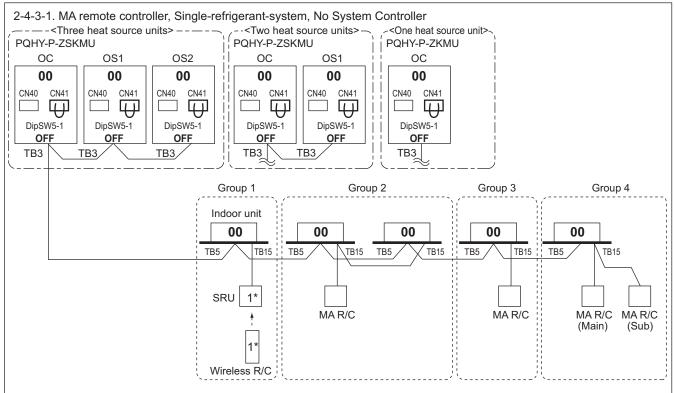
SW No	SW contents Main	ON	OFF	Comment
1	Remote controller Main/Sub setting	Main	Sub	Set one of the two remote controllers at one group to "ON".
2	Temperature display units setting	Celsius	Fahrenheit	When the temperature is displayed in [Fahrenheit], set to "OFF".
3	Cooling/heating display in AUTO mode	Yes	No	When you do not want to display "Cooling" and "Heating" in the AUTO mode, set to "OFF".
4	Indoor temperature display	Yes	No	When you do not want to display the indoor temperature, set to "OFF".

	Rotary switch
Branch No. setting	Unit address No. setting
173456 400 4568 400 8456 8456 8456 8456 8456 8456 8456 8456	$ \begin{array}{c} $

2-4-2. Rule of setting address

	Unit	Address setting	Example	Note
Sy: (M. A-N	oor unit stem control interface AC-333IF-E) A converter AC-IF01MNT-E)	01 ~ 50	$ \begin{array}{c} $	Use the most recent address within the same group of indoor units. Make the indoor units address connected to the BC controller (Sub) larger than the indoor units address connected to the BC controller (Main). If applicable, set the sub BC controllers in an PQRY system in the following order: (1) Indoor unit to be connected to the BC controller (Main) (2) Indoor unit to be connected to the BC controller (No.1 Sub) (3) Indoor unit to be connected to the BC controller (No.2 Sub) Set the address so that (1)<(2)<(3)
He	eat source unit	51 ~ 99, 100 (Note1)	$ \begin{array}{c} $	The smallest address of indoor unit in same refrigerant system + 50 Assign sequential address numbers to the heat source units in one refrigerant circuit system. OC and OS are automatically detected. (Note 2) * Please reset one of them to an address between 51 and 99 when two addresses overlap. * The address automatically becomes "100" if it is set as "01~ 50"
	C controller ain)	52 ~ 99, 100	$ \begin{array}{c} $	The address of heat source unit + 1 * Please reset one of them to an address between 51 and 99 when two addresses overlap. * The address automatically becomes "100" if it is set as "01~ 50"
	C controller ub)	52 ~ 99, 100	$10 \qquad \qquad$	Lowest address within the indoor units connected to the BC controller (Sub) plus 50.
remote controller	ME, LOSSNAY Remote controller (Main)	101 ~ 150	Fixed 10° 10° 10° 10° 10°	The smallest address of indoor unit in the group + 100 * The place of "100" is fixed to "1"
Local remot	ME, LOSSNAY Remote controller (Sub)	151 ~ 199, 200	$1_{\text{Fixed}} \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{10} \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{1}$	The address of main remote controller + 50 *The address automatically becomes "200" if it is set as "00"
	ON/OFF remote controller	201 ~ 250	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	The smallest group No. to be managed + 200 * The smallest group No. to be managed is changeable.
ontroller	AE-200A/AE-50A AG-150A-A EB-50GU-A EW-50A TC-24B	000, 201 ~ 250	0 0 0	* TC-24B cannot be set to "000".
System controller	PAC-YG50ECA	000, 201 ~ 250	0 0 0	* Settings are made on the initial screen of AG-150A-A.
	BAC-HD150	000, 201 ~ 250	0 0 0	* Settings are made with setting tool of BM ADAPTER.
	LMAP04U-E	201 ~ 250	$\begin{array}{c} 2\\ Fixed \end{array} \overbrace{10}^{\left(\begin{smallmatrix} 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \end{array}\right)} \overbrace{\left(\begin{smallmatrix} 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	
	PAC-YG60MCA	01 ~ 50	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -0 & 0 \\ -0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	
PI, AI, DIDO	PAC-YG63MCA	01 ~ 50	$10 \qquad \qquad$	
	PAC-YG66DCA	01 ~ 50	$10 \begin{bmatrix} q_{1}^{0} \\ q_{2}^{0} \\ q_{3}^{0} \\ q_{4}^{0} \\$	
LC	OSSNAY	01 ~ 50	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ $1 \\ \end{array} $	After setting the addresses of all the indoor units, assign an arbitrary address.
PA	C-IF01AHC-J	201 ~ 250	$\underset{\text{Fixed}}{2} \qquad \qquad \underset{r \to g = q}{\overset{0}{\underset{r \to g = q}{\underset{r \to g = q}{\overset{0}{\underset{r \to g = q}{\overset{0}{\underset{r \to g = q}{\underset{r \to g = q}{\overset{0}{\underset{r \to g = q}{\underset{r \to g = q}}{\underset{r \to g = q}{\underset{r \to g = q}}{\underset{r \to g = q}{\underset{r \to g = q}{\underset{r \to g = q}{\underset{r \to g = q}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	

Note1: To set the address to "100", set it to "50" Note2: Heat source units OC and OS in one refrigerant circuit system are automatically detected. OC and OS are ranked in descending order of capacity. If units are the same capacity, they are ranked in ascending order of their address.


2-4-3. System examples

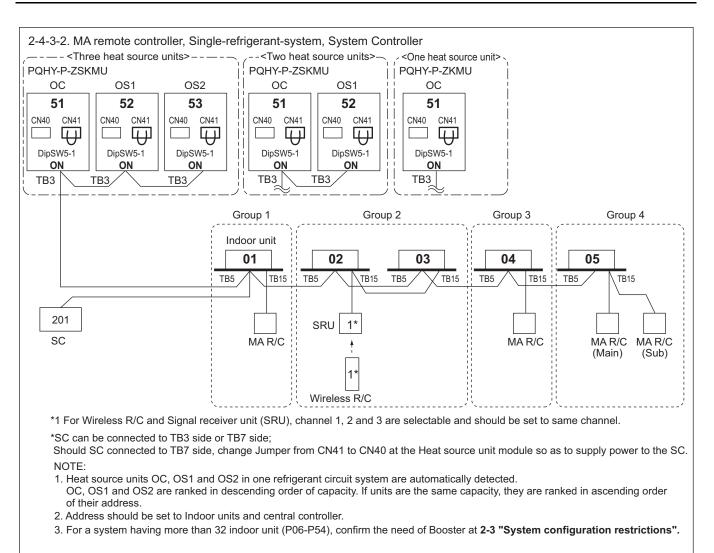
Factory setting

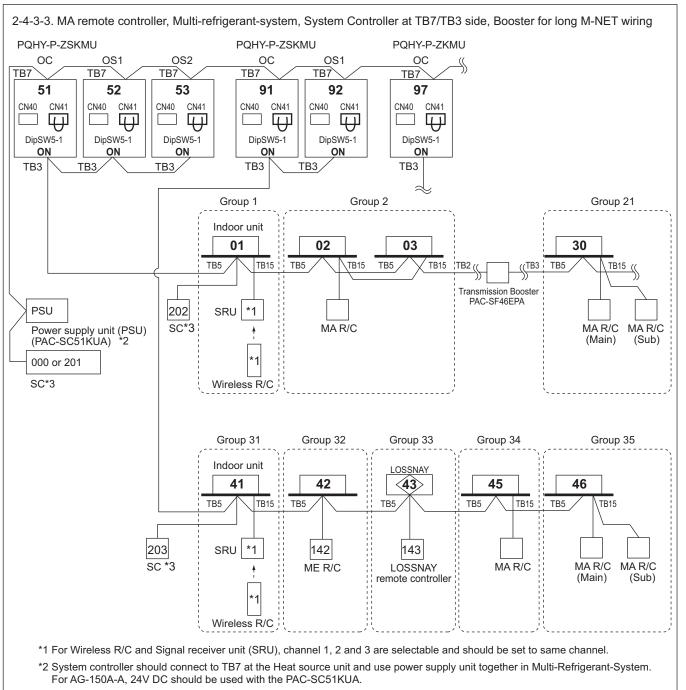
Original switch setting of t	he heat sources, indoors, controllers, LM-AP, and BM ADAPTER at shipment is as follows.
 Heat source unit 	: Address: 00, CN41: ON (Jumper), DipSW5-1: OFF
 Indoor unit 	: Address: 00
 ME remote controller 	: Address: 101
•LM-AP	: Address: 247, CN41: ON (Jumper), DipSW1-2: OFF
 BM ADAPTER 	: Address: 000, CN41: ON (Jumper)

Setting at the site

•DipSW5-1(Heat source	e) : When the System Controller is used, all the Dip SW5-1 at the heat source units should be set to "ON". * Dip SW5-1 remains OFF when only LM-AP is used.
•DipSW1-2(LM-AP)	: When the LM-AP is used together with System Controller, DipSW1-2 at the LM-AP should be set to "ON".
•CN40/CN41	: Change jumper from CN41 to CN 40 at heat source control board will activate central transmission power supply to TB7;
	(Change jumper at only one heat source unit when activating the transmission power supply without using a power supply unit.)
	Change jumper from CN41 to CN 40 at LM-AP will activate transmission power supply to LM-AP itself;
	Power supply unit is recommended to use for a system having more than 1 heat source unit, because the central transmission power supply from TB7 of one of heat source units is risking that the heat source unit failure may let down the whole system controller system.

*1 For Wireless R/C and Signal receiver unit (SRU), channel 1, 2 and 3 are selectable and should be set to same channel.

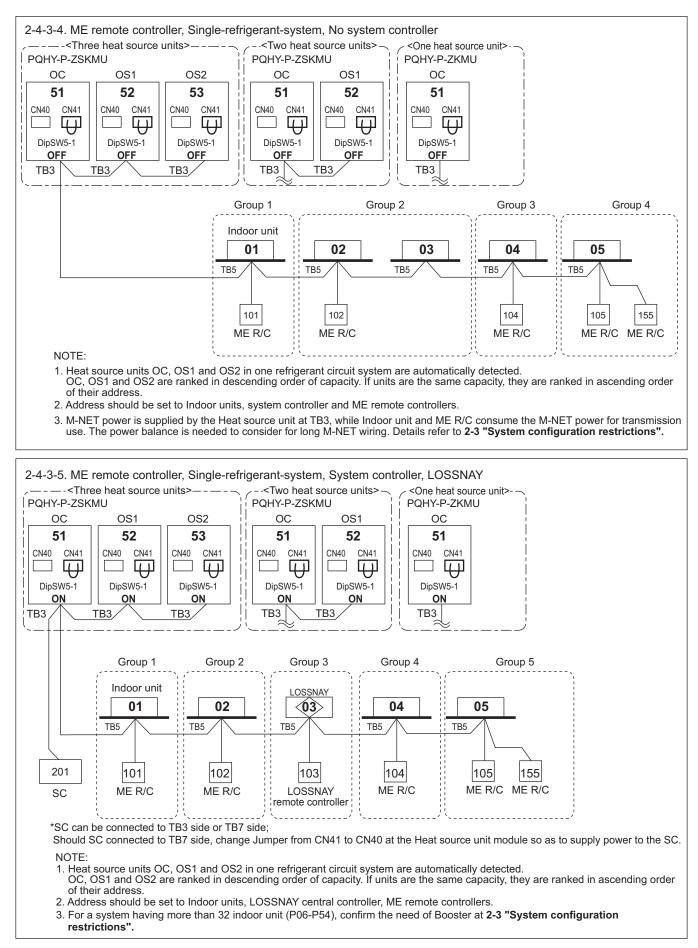

NOTE:

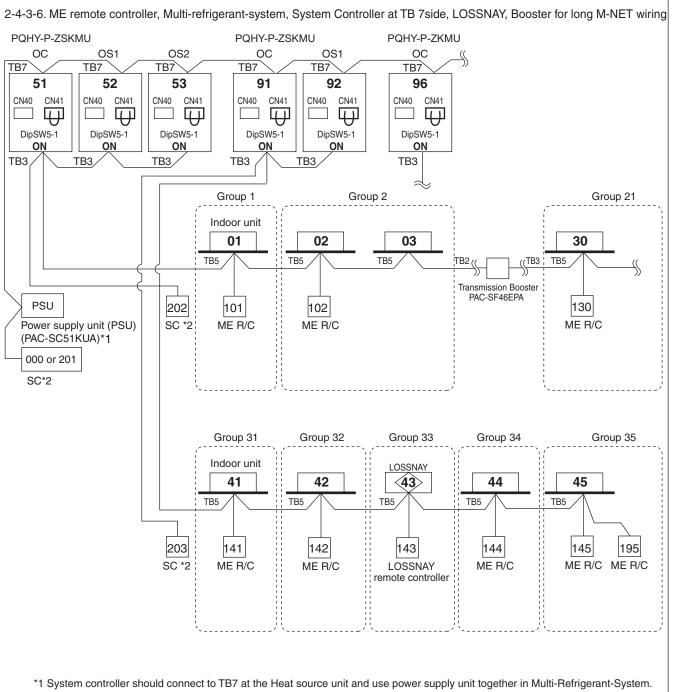

1. Heat source units OC, OS1 and OS2 in one refrigerant circuit system are automatically detected.

OC, OS1 and OS2 are ranked in descending order of capacity. If units are the same capacity, they are ranked in ascending order of their address.

2. No address setting is needed.

3. For a system having more than 32 indoor unit (P06-P54), confirm the need of Booster at 2-3 "System configuration restrictions".



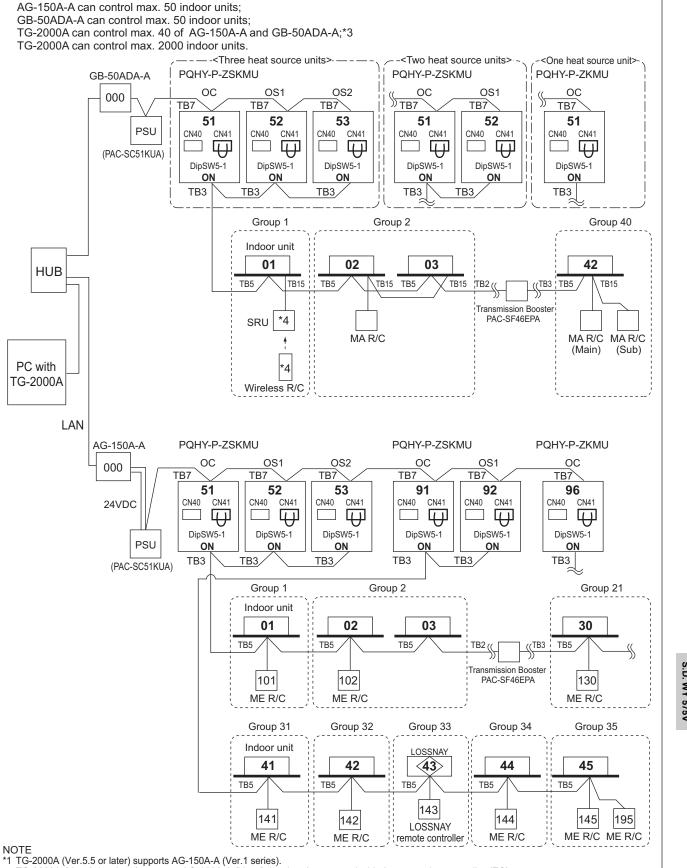


- *3 When multiple system controllers are connected in the system, set the controller with more functions than others as a "main" controller and others as "sub".
 - TC-24A, AG-150A-A, GB-50ADA-A and GB-24A are for exclusive use as a "main" system controller and cannot be used as a "sub" system controller.
 - Make the setting to only one of the system controllers for "prohibition of operation from local remote controller".

NOTE

- 1. Heat source units OC, OS1 and OS2 in one refrigerant circuit system are automatically detected.
- OC, OS1 and OS2 are ranked in descending order of capacity. If units are the same capacity, they are ranked in ascending order of their address.
- 2. Address should be set to Indoor units, LOSSNAY and system controller.
- 3. M-NET power is supplied by the Heat source unit at TB3, while Indoor unit and ME remote controller consume the M-NET power for transmission use. The power balance is needed to consider for long M-NET wiring. Details refer to 2-3 "System configuration restrictions".

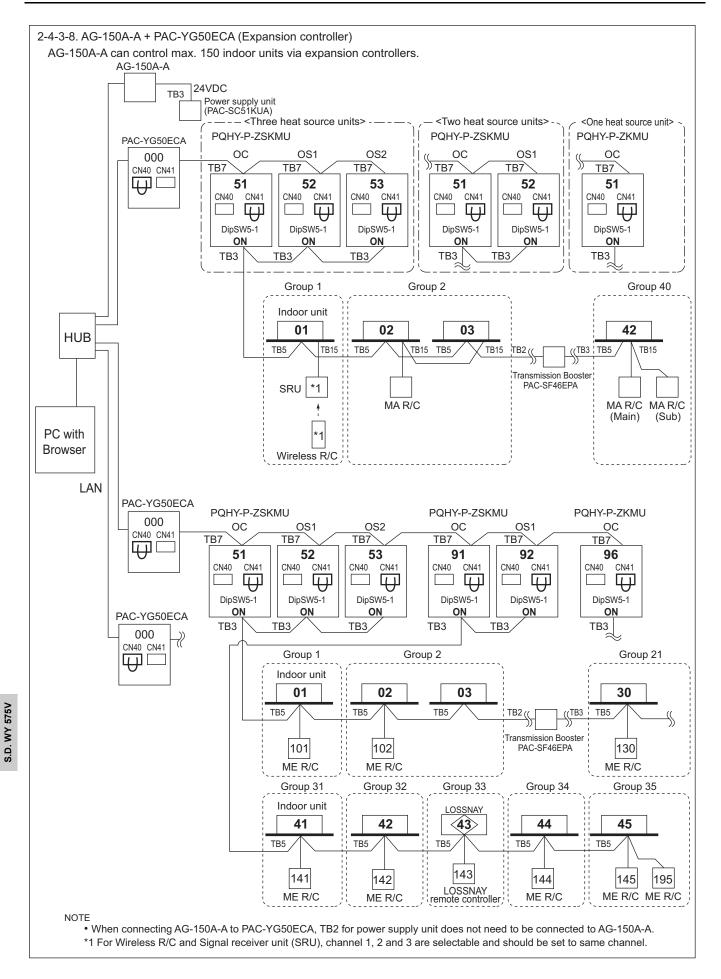
- For AG-150A-A, 24V DC should be used with the PAC-SC51KUA.
- *2 When multiple system controllers are connected in the system, set the controller with more functions than others as a "main" controller and others as "sub".
 - TC-24A, AG-150A-A, GB-50ADA-A and GB-24A are for exclusive use as a "main" system controller and cannot be used as a "sub" system controller.

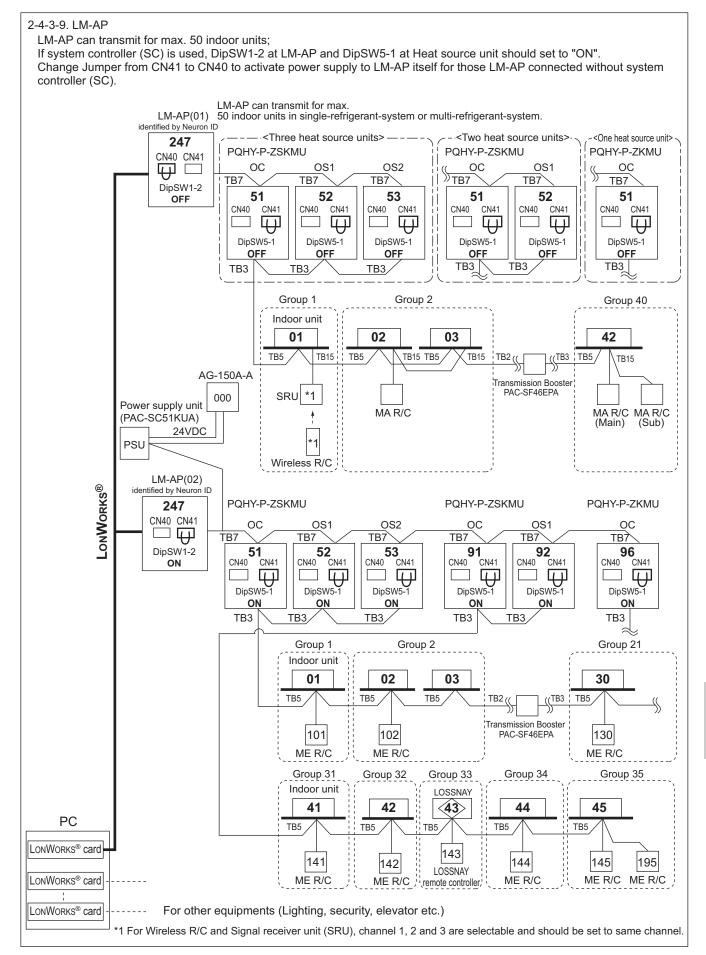

Make the setting to only one of the system controllers for "prohibition of operation from local remote controller".

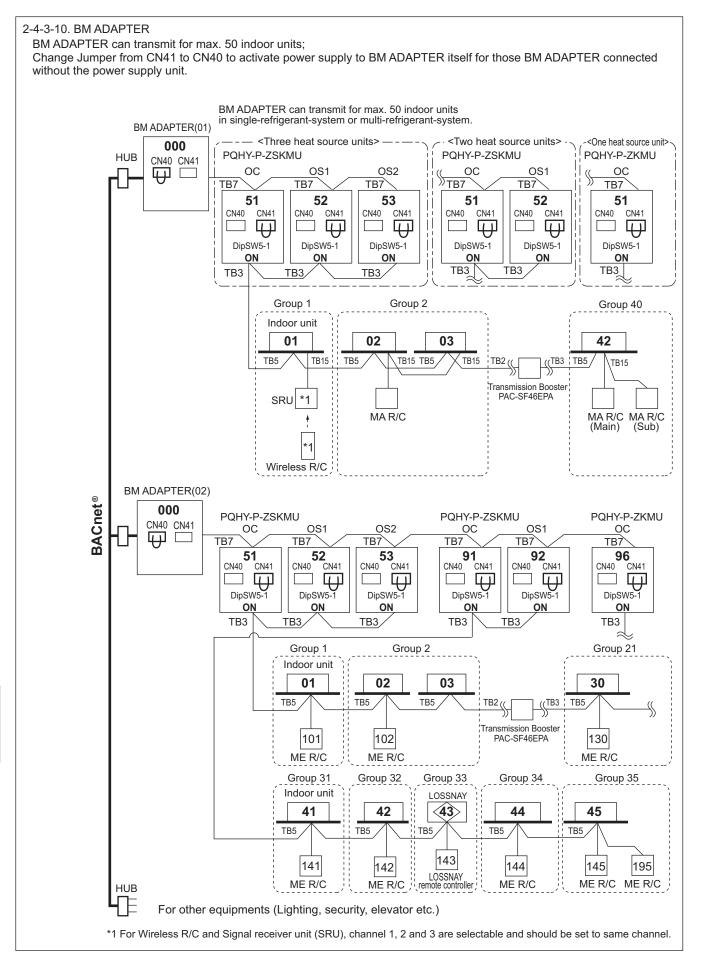
NOTE:

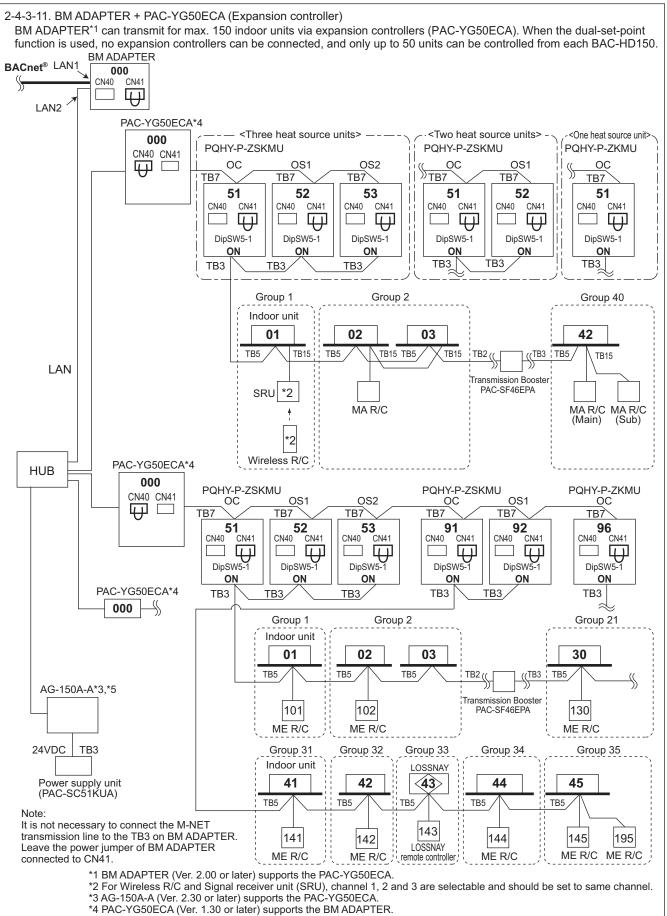
- 1. Heat source units OC, OS1 and OS2 in one refrigerant circuit system are automatically detected. OC, OS1 and OS2 are ranked in descending order of capacity. If units are the same capacity, they are ranked in ascending order of their address.
- 2. M-NET power is supplied by the Heat source unit at TB3, while Indoor unit and ME remote controller consume the M-NET power for transmission use. The power balance is needed to consider for long M-NET wiring. Details refer to 2-3 "System configuration restrictions".

PC with


2-4-3-7. TG-2000A(*1)+AG-150A-A*2,GB-50ADA-A

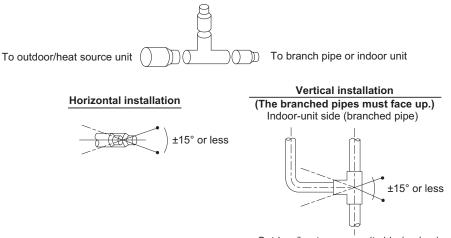



TG-2000A (Ver. 6.1 or later) supports AG-150A-A (Ver. 2.1 or later) connected with the expansion controller (EC). TG-2000A (Ver. 6.3 or later) supports GB-50ADA-À.


*2 AG-150A-A (Ver.1 series) does not support the expansion controller (EC).

*3 When AG-150A-A connected with the expansion controller (EC) is connected, the number of EC will be the maximum controllable number. TG-2000A can control up to 40 EC or AG-150A-A without EC connection.
 *4 For Wireless R/C and Signal receiver unit (SRU), channel 1, 2 and 3 are selectable and should be set to same channel.

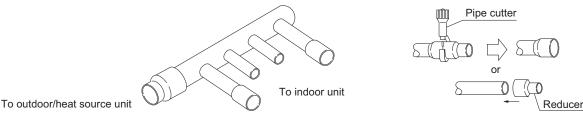
*5 Consult your dealer for restrictions when connecting both AG-150A-A and BM ADAPTER to PAC-YG50ECA.


3-1. R410A Piping material

The maximum operation pressure of R410A air conditioner is 4.15 MPa [601 psi]. The refrigerant piping should ensure the safety under the maximum operation pressure. You shall follow the local industrial standard.

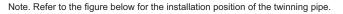
Procedures for installing the branched pipes

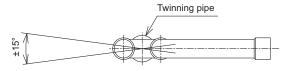
Refer to the instructions that came with the branched pipe kit (separately sold) for details. [1] Branches on the indoor-unit side


∎Joint

Outdoor/heat source-unit side (main pipe)

- •Restrictions for installing the joint described here only apply to CMY-Y202S-G2 and CMY-Y302S-G2 in the gas line. •CMY-Y202S-G2 and CMY-Y302S-G2 in the gas line must be installed horizontally (see figure above) or with the
- branched pipes facing up. +If the size of the refrigerant pipe that is selected by following the instructions under 3-2. Piping Design does not r
- •If the size of the refrigerant pipe that is selected by following the instructions under 3-2. Piping Design does not match the size of the joint, use a reducer to connect them. A reducer is included in the kit.


∎Header



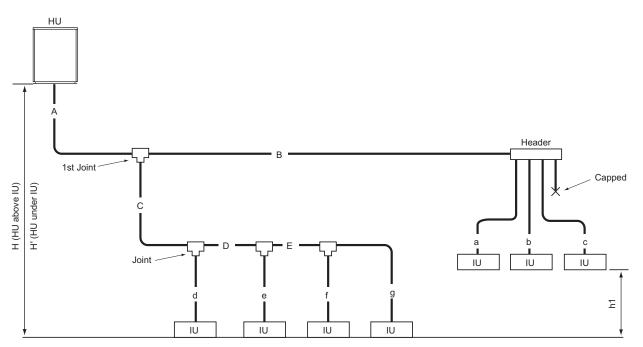
•No restrictions apply to the installation of the header.

If the size of the refrigerant pipe that is selected by following the instructions under 3-2. Piping Design does not match the size of the header, cut the pipe to an appropriate size using a pipe cutter, or use a reducer to connect them.
If the number of header branches exceeds the number of pipes to be connected, cap the unused header branches. Caps are included in the kit.

[2] Branches on the outdoor/heat source-unit side

Slope of the twinning pipes are at an angle within ±15° to the horizontal plane.

Inclination of the branched pipes


The inclination of the branched pipes must be $\pm 15^{\circ}$ or less against the horizontal plane. Excessive inclination of the branched pipes may damage the unit.

•Minimum length of the straight section of the pipe before the branched pipes

Always use the pipes supplied in the branched pipe kit, and make sure the straight section of the pipe immediately before it connects to the branched pipe is at least 500 mm. Failure to do so may damage the unit.

3-2. Piping Design

Selecting refrigerant pipes

IU: Indoor unit , HU: heat source unit

1. Selecting joints

Select joints from Table 4-1 [Selection criteria for joints] based on the total capacity of indoor units on the downstream side. When selecting the first joint for the system to which the heat source unit listed in Table 4-2 [See the table below for the first joint of the heat source unit described below.] is connected, select the first joint from Table 4-2.

2. Selecting headers

Select headers from Table 5 [Header selection rule] based on the number of indoor units to be connected. Refer to Table 5, which shows the total capacity limits, for the indoor units to be connected on the downstream side. When connecting a header directly to the heat source unit, select the header by referring to the notes in Table 5. *The piping cannot be branched on the downstream of the header.

3. Selecting refrigerant pipe sizes

(1) Between heat source unit and the 1st joint [A]

Select the appropriate size pipes for the selected heat source unit from Table 1 [Piping "A" size selection rule].

(2) Between joints [B, C, D, and E] Select the appropriate size pipes from Table 2 [Piping "B", "C", "D", ... size selection rule] based on the total capacity of indoor units on the downstream side.

- (3) Between joints and indoor units [a, b, c, d, e, f, and g]
- Select the appropriate size pipes from Table 3 [Piping "a", "b", "c", "d", ... size selection rule] based on the capacity of indoor units. (4) After selecting the pipe sizes in accordance with steps (1) through (3) above, if the size of the pipes on the downstream is larger than that
- on the upstream, it is not necessary to be bigger than the upstream one.
- 4. Checking the refrigerant charge

Calculate the amount of refrigerant to be added based on the pipe sizes selected in Items 1 through 3 above, and make sure that the total amount of the initial charge and the additional charge combined will not exceed the maximum allowable refrigerant charge amount. If this amount exceeds the maximum allowable amount, redesign the system (i.e., piping length) so that the total refrigerant charge will not exceed the maximum allowable amount.

3-2-1. PQHY-P72-120ZKMU Piping

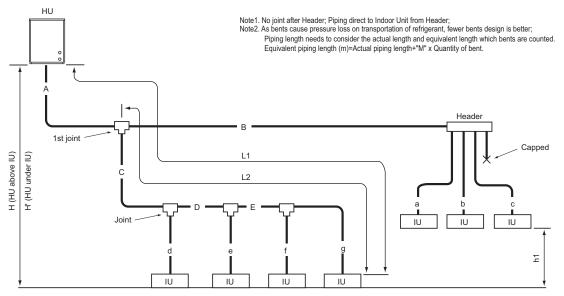


Fig. 3-2-1A Piping scheme

IU: Indoor unit, HU: Heat source unit

Piping length			(m [ft.])	Bends equivalent length	י "M"
Item	Piping in the figure	Max. length	Max. equivalent length	Heat source Model	M (m/bends [ft./bends])
Total piping length	A+B+C+D+E+a+b+c+d+e+f+g	300 [984]	-	PQHY-P72ZKMU	0.35 [1.15]
Farthest IU from HU (L1)	A+C+D+E+g / A+B+c	165 [541]	190 [623]	PQHY-P96ZKMU	0.42 [1.38]
Farthest IU from first joint (L2)	C+D+E+g / B+c	40 [131]	40 [131]	PQHY-P120ZKMU	0.42 [1.38]
Height between HU and IU (HU above IU)	Н	50 [164]	-		
Height between HU and IU (HU under IU)	H'	40 [131]	-		
Height between IU and IU	h1	15 [49]	-		
HU: Heat source Unit, IU: Indoor Unit					

(mm [in.])

Pipe(Gas)

ø15.88 [5/8]

ø19.05 [3/4]

ø22.20 [7/8]

ø34.93 [1-3/8]

ø22.20 [7/8]

Table1. Piping "A" size selection rule

		(1/	
Heat source unit	Pipe(Liquid)	Pipe(Gas)	
PQHY-P72ZKMU	ø9.52 [3/8]	ø19.05 [3/4]	
PQHY-P96ZKMU	ø9.52 [3/8] *1	ø22.20 [7/8]	
PQHY-P120ZKMU	ø9.52 [3/8] *2	ø22.20 [7/8]	

Pipe(Liquid)

ø9.52 [3/8]

ø9.52 [3/8]

ø9.52 [3/8]

ø12.70 [1/2]

ø15.88 [5/8]

ø19.05 [3/4]

ø9.52 [3/8]

*1. L1>=90 m [295 ft.], ø12.70 mm [1/2 in.] ;

*2. L1>=40 m [131 ft.], ø12.70 mm [1/2 in.]

Total down-stream Indoor capacity

~ P54

~ P72

~ P108

P109 ~ P144

P145 ~ P240

P241 ~ P308

P55

P73

Table2. Piping"B","C","D","E"size selection rule

(mm [in.]) Table4-1. Selection criteria for joints

Total down-stream Indoor capacity	Joint
~ P72	CMY-Y102SS-G2
P73 ~ P144	CMY-Y102LS-G2
P145 ~ P240	CMY-Y202S-G2
P241 ~	CMY-Y302S-G2

*Concerning detailed usage of joint parts, refer to its Installation Manual.

	9			
Tabl	e4-2.			
See 4	the teh	la hali	fr	ar the

See the table below for the first joint of the heat source unit described below.

the heat source unit described below.		
heat source unit model	Joint model	
P96 to P120	CMY-Y102SS/LS-G2	

Table5.	Header	selection	rule
---------	--------	-----------	------

	4-branch Header	8-branch Header	10-branch Header
	CMY-Y104C-G	CMY-Y108C-G	CMY-Y1010C-G
Total down-stream Indoor capacity	<=P72	<=P144	<=P240

* CMY-Y104C-G can directly connect PQHY-P72ZKMU, but can NOT directly connect PQHY-P96ZKMU or above;

* CMY-Y108C-G can directly connect PQHY-P72~168Z(S)KMU, but can NOT directly connect PQHY-P192ZSKMU or above; * CMY-Y1010C-G can directly connect PQHY-P72~240Z(S)KMU; ø28.58 [1-1/8] ø28.58 [1-1/8]

* CMY-Y104C-G can NOT connect P72~P96 Indoor, but CMY-Y108, Y1010C-G can do;

^t Concerning detailed usage of Header parts, refer to its Installation Manual.

Indoor capacity is described as its model size; Note3

For example, PEFY-P06NMAU-E3, its capacity is P06; Total down-stream Indoor capacity is the summary of the model size of Indoors downstream. Note4

For example, PEFY-P06NMAU-E3+PEFY-P08NMAU-E3: Total Indoor capacity=P06+P08=P14

Note5.	Piping sized determined by the Total down-stream indoor capacity is NOT necessary
	to be bigger than the un-stream one

i.e. A>=B; A>=C>=D

P309 ~	ø19.05 [3/4]	ø41.28 [1-5/8]
		<i>,</i>
Table3. Piping "a","b","c","d","e","f","g	size selection rule	(mm [in.])
Indoor Unit size	Pipe(Liquid)	Pipe(Gas)
P06,P08,P12,P15,P18	ø6.35 [1/4]	ø12.70 [1/2]
P24,P27,P30,P36,P48,P54	ø9.52 [3/8]	ø15.88 [5/8]
P72	ø9.52 [3/8]	ø19.05 [3/4]

P96

3-2-2. PQHY-P144-240ZSKMU Piping

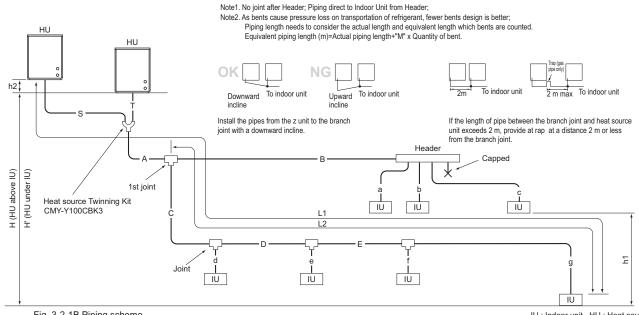


Fig. 3-2-1B Piping scheme

Table2. Piping"B","C","D","E" size selection rule

Total down-stream Indoor capacity

~ P54

~ P72

P73 ~ P108

P109 ~ P144

P145 ~ P240

P241 ~ P308

P309 ~

P55

Piping length			(m [ft.])	Bends equivalent length	"M"
Item	Piping in the figure	Max. length	Max. equivalent length	Heat source Model	Μ
Total piping length	S+T+A+B+C+D+E+a+b+c+d+e+f+g	500 [1640]	-	PQHY-P144ZSKMU	
Distance between HU and HU	S+T	10[32]	-	PQHY-P168ZSKMU	
Height between HU and HU	h2	0.1[0.3]	-	PQHY-P192ZSKMU	
Farthest IU from HU (L1)	S(T)+A+C+D+E+g / S(T)+A+B+c	5 165 [541]	190 [623]	PQHY-P216ZSKMU	
Farthest IU from the first joint (L2)	C+D+E+g / B+c	40 [131]	40 [131]	PQHY-P240ZSKMU	
Height between HU and IU (HU above IU)	Н	50 [164]	-		
Height between HU and IU (HU under IU)	H'	40 [131]	-		
Height between IU and IU	h1	15 [49]	-		

IU : Indoor	unit, HU	: Heat so	urce unit

M (m/bends [ft./bends])

0.50 [1.64]

0.50 [1.64]

0.50 [1.64]

0.50 [1.64]

0.50 [1.64]

-			
HU: Heat source	Unit.	IU:	Indoor Unit

Table1. Piping "A" size selection rule		(mm [in.])
Heat source unit	Pipe(Liquid)	Pipe(Gas)
PQHY-P144ZSKMU	ø12.70[1/2]	ø28.58[1-1/8]
PQHY-P168-240ZSKMU	ø15.88[5/8]	ø28.58[1-1/8]

For Piping size "S", "T", please refer to specification of the Twinning kit CMY-Y100CBK3 at the Heat source unit's external drawing.

Pipe(Liquid)

ø9.52 [3/8]

ø9.52 [3/8]

ø9.52 [3/8]

ø12.70 [1/2]

ø15.88 [5/8]

ø19.05 [3/4]

ø19.05 [3/4]

Table4-1.	Selection	criteria	for	joints

Total down-stream Indoor capacity	Joint
~ P72	CMY-Y102SS-G2
P73 ~ P144	CMY-Y102LS-G2
P145 ~ P240	CMY-Y202S-G2
P241 ~	CMY-Y302S-G2

*Concerning detailed usage of joint parts, refer to its Installation Manual. *The total capacity of the units in the downstream of the branch joint on at least one of the piping lines that are connected to the branch joint should be 240 or below.

If the total capacity of the units in the downstream of the branch joints on both lines is 240 or above use two branch joints (CMY-Y302S-G2).

Table4-2.

See the table below for the first joint of the heat source unit described below.			
heat source unit model	Joint model		
P144 to P240	CMY-Y202S-G2		

Table5. Header selection rule

		4-branch Header	8-branch Header	10-branch Header
		CMY-Y104C-G	CMY-Y108C-G	CMY-Y1010C-G
)	Total down-stream Indoor capacity	<=P72	<=P144	<=P240
	* CMY-Y104C-G can directly connect PC	HY-P727KMLL but can N	OT directly connect POH	-P967KMLL or above

* CMY-Y108C-G can directly connect PQHY-P72~168Z(S)KMU, but can NOT directly connect PQHY-P192ZSKMU or above; * CMY-Y1010C-G can directly connect PQHY-P72~2402(S)KMU; * CMY-Y104C-G can NOT connect P72~P96 Indoor, but CMY-Y108,Y1010C-G can do;

Concerning detailed usage of Header parts, refer to its Installation Manual.

Note3 Indoor capacity is described as its model size: For example, PEFY-P06NMAU-E3, its capacity is P06;

Total down-stream Indoor capacity is the summary of the model size of Indoors downstream. For example, PEFY-P06NMAU-E3+PEFY-P08NMAU-E3: Total Indoor capacity=P06+P08=P14 Note4

Note5. Piping sized determined by the Total down-stream indoor capacity is NOT necessary to be bigger than the up-stream one i.e. A>=B; A>=C>=D

Table3. Piping"a","b","c","d","e","f","g	" size selection rule	(mm [in.])
Indoor Unit size	Pipe(Liquid)	Pipe(Gas)
P06,P08,P12,P15,P18	ø6.35 [1/4]	ø12.70 [1/2]
P24,P27,P30,P36,P48,P54	ø9.52 [3/8]	ø15.88 [5/8]
P72	ø9.52 [3/8]	ø19.05 [3/4]
P96	ø9.52 [3/8]	ø22.20 [7/8]

(mm [in.])

Pipe(Gas)

ø15.88 [5/8]

ø19.05 [3/4]

ø22.20 [7/8]

ø28.58 [1-1/8]

ø28.58 [1-1/8]

ø34.93 [1-3/8]

ø41.28 [1-5/8]

3-2-3. PQHY-P264-360ZSKMU Piping

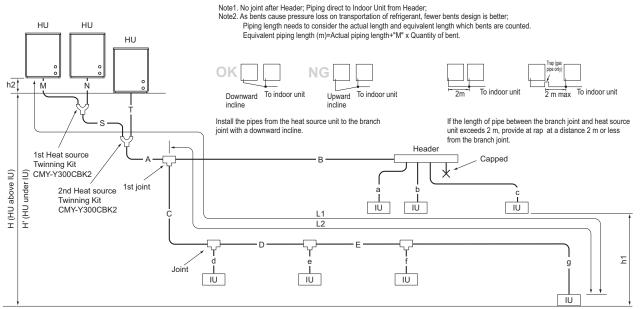


Fig. 3-2-1C Piping scheme

		(m [ft.])	Bends eq
Piping in the figure	Max. length	Max. equivalent length	Heat sou
S+T+M+N+A+B+C+D+E+a+b+	c+d+e+f+g 500[1640]	-	PQHY-P2
M+N+S+T	10[32]	-	PQHY-P2
h2	0.1[0.3]	-	PQHY-P3
M(N)+S+A+C+D+E+g / M(N)+	+S+A+B+c 165[541]	190[623]	PQHY-P3
C+D+E+g / B+c	40[131]	40[131]	PQHY-P3
Н	50[164]	-	
H'	40[131]	-	
h1	15[49]	-	
	S+T+M+N+A+B+C+D+E+a+b+ M+N+S+T h2 M(N)+S+A+C+D+E+g / M(N) C+D+E+g / B+c H H'	S+T+M+N+A+B+C+D+E+a+b+c+d+e+f+g 500[1640] M+N+S+T 10[32] h2 0.1[0.3] M(N)+S+A+C+D+E+g / M(N)+S+A+B+c 165[541] C+D+E+g / B+c 40[131] H 50[164] H' 40[131]	Piping in the figure Max. length Max. equivalent length S+T+M+N+A+B+C+D+E+a+b+c+d+e+f+g 500[1640] - M+N+S+T 10[32] - h2 0.1[0.3] - M(N)+S+A+C+D+E+g / M(N)+S+A+B+c 165[541] 190[623] C+D+E+g / B+c 40[131] 40[131] H 50[164] - H' 40[131] -

III · Indoor unit	HU : Heat source unit

Bends equivalent length "M"					
Heat source Model	M (m/bends [ft./bends])				
PQHY-P264ZSKMU	0.70 [2.29]				
PQHY-P288ZSKMU	0.70 [2.29]				
PQHY-P312ZSKMU	0.70 [2.29]				
PQHY-P336ZSKMU	0.80 [2.62]				
PQHY-P360ZSKMU	0.80 [2.62]				

HU: Heat source Unit, IU: Indoor Unit

Table1. Piping "A" size selection rule

Heat source unit	Pipe(Liquid)	Pipe(Gas)
PQHY-P264-312ZSKMU	ø19.05[3/4]	ø34.93[1-3/8]
PQHY-P336,360ZSKMU	ø19.05[3/4]	ø41.28[1-5/8]

For Piping size"M", "N", "S", "T", please refer to specification of the Twinning kit CMY-Y300CBK2 at the Heat source unit's external drawing.

Pipe(Liquid)

ø6.35 [1/4]

ø9.52 [3/8]

ø9.52 [3/8]

ø9.52 [3/8]

Table2. Piping"B","C","D","E" size s	Table2. Piping"B","C","D","E" size selection rule							
Total down-stream Indoor capacity	Pipe(Liquid)	Pipe(Gas)						
~ P54	ø9.52 [3/8]	ø15.88 [5/8]						
P55 ~ P72	ø9.52 [3/8]	ø19.05 [3/4]						
P73 ~ P108	ø9.52 [3/8]	ø22.20 [7/8]						
P109 ~ P144	ø12.70 [1/2]	ø28.58 [1-1/8]						
P145 ~ P240	ø15.88 [5/8]	ø28.58 [1-1/8]						
P241 ~ P308	ø19.05 [3/4]	ø34.93 [1-3/8]						
P309 ~	ø19.05 [3/4]	ø41.28 [1-5/8]						

Table3. Piping"a","b","c","d","e","f","g" size selection rule

(mm [in.]) Table4-1. Selection criteria for joints

Tables-1. Selection citteria for joints	
Total down-stream Indoor capacity	Joint
~ P72	CMY-Y102SS-G2
P73 ~ P144	CMY-Y102LS-G2
P145 ~ P240	CMY-Y202S-G2
P241 ~	CMY-Y302S-G2

*The total capacity of the units in the downstream of the branch joint on at least one of the piping lines that are connected to the branch joint should be 240 or below. If the total capacity of the units in the downstream of the branch joints on both lines is 240

or above use two branch joints (CMY-Y302S-G2).

*Concerning detailed usage of joint parts, refer to its Installation Manual

Table4-2.

See	the	table	be	low 1	for	the 1	first	join	t of	

the heat source unit described below.								
heat source unit model	Joint model							
P264 to P360	CMY-Y302S-G2							

Table5 Header selection rule

	4-branch Header	8-branch Header	10-branch Heade	
	CMY-Y104C-G	CMY-Y108C-G	CMY-Y1010C-G	
Total down-stream Indoor capacity	<=P72	<=P144	<=P240	

 CMY-1108C-G can directly connect PQHY-P72-1682(S)(MU, but can NOT directly connect PQHY-P192ZSKMU or above;
 CMY-Y1010C-G can directly connect PQHY-P72-2402(S)(KMU; * CMY-Y104C-G can NOT connect P72~P96 Indoor, but CMY-Y108, Y1010C-G can do;

Concerning detailed usage of Header parts, refer to its Installation Manual

Note3

Indoor capacity is described as its model size; For example, PEFY-P06NMAU-E3, its capacity is P06;

Note4 Total down-stream Indoor capacity is the summary of the model size of Indoors downstream For example, PEFY-P06NMAU-E3+PEFY-P08NMAU-E3: Total Indoor capacity=P06+P08=P14

Piping sized determined by the Total down-stream indoor capacity is NOT necessary Note5. to be bigger than the up-stream one. i.e. A>=B; A>=C>=D

P72

P96

Indoor Unit size

P06,P08,P12,P15,P18

P24, P27, P30, P36, P48, P54

(m<u>m [in.])</u>

Pipe(Gas)

ø12.70 [1/2]

ø15.88 [5/8]

ø19.05 [3/4]

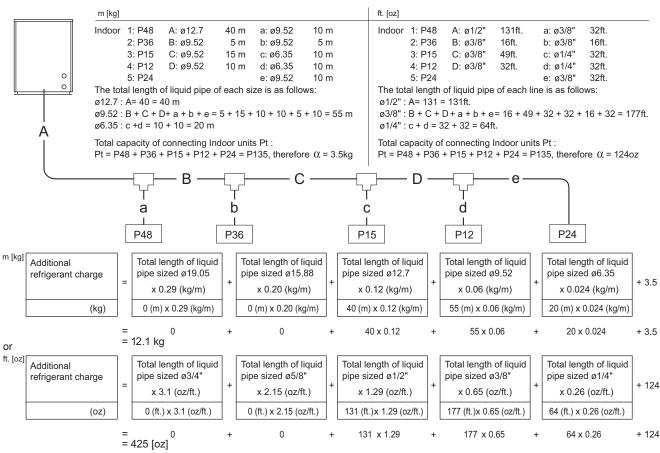
ø22.20 [7/8]

3-3. Refrigerant charging calculation

At the time of shipping, the heat source unit is charged with the refrigerant. As this charge does not include the amount needed for extended piping, additional charging for each refrigerant line will be required on site. In order that future servicing may be properly provided, always keep a record of the size and length of each refrigerant line and the amount of additional charge by writing it in the space provided on the heat source unit.

(1) Calculation of additional refrigerant charge

- Calculate the amount of additional charge based on the length of the piping extension and the size of the refrigerant line.
- Use the table to the below as a guide to calculating the amount of additional charging and charge the system accordingly.
- * When connecting PLFY-P08NBMU-E2, add 0.3kg (10.6 oz) of refrigerant per indoor unit.
- If the calculation results in a fraction of less than 0.1kg[1oz], round up to the next 0.1kg[1oz]. For example, if the result of the calculation was 12.38kg[435.1oz], round the result up to 12.4kg[436oz].

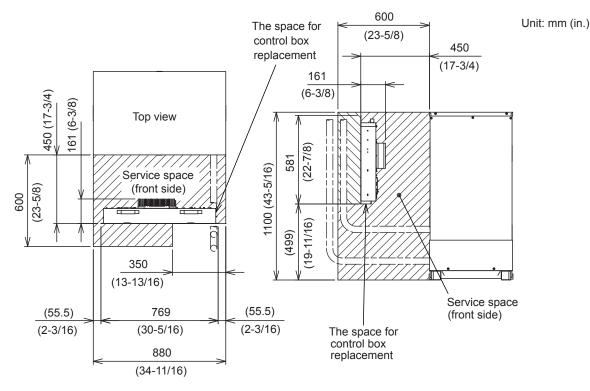

<Additional Charge>

Additional refrigerant charge		Total length of liquid pipe sized ø19.05 [3/4"]		Total length of liquid pipe sized ø15.88 [5/8"]	.[Total length of liquid pipe sized ø12.7 [1/2"]	Total length of liquid pipe sized ø9.52 [3/8"]	Total length of liquid pipe sized ø6.35 [1/4"]	
(kg) (oz)	_	(m) x 0.29 (kg/m) (ft.) x 3.1 [oz/ft.]	т	(m) x 0.20 (kg/m) (ft.) x 2.15 [oz/ft.]		(m) x 0.12 (kg/m) (ft.) x 1.29 [oz/ft.]	(m) x 0.06 (kg/m) (ft.) x 0.65 [oz/ft.]	(m) x 0.024 (kg/m) (ft.) x 0.26 [oz/ft.]	τū

Table3-2-4-1. Value of α

Total capacity of connecting indoor units	(χ
Models ~ 27	2.0 kg	[71 oz]
Models 28 ~ 54	2.5 kg	[89 oz]
Models 55~126	3.0 kg	[106 oz]
Models 127~144	3.5 kg	[124 oz]
Models 145~180	4.5 kg	[160 oz]
Models 181~234	5.0 kg	[177 oz]
Models 235~273	6.0 kg	[212 oz]
Models 274~307	8.0 kg	[283 oz]
Models 308~342	9.0 kg	[318 oz]
Models 343~411	10.0 kg	[353 oz]
Models 412~480	12.0 kg	[424 oz]
Models 481~	14.0 kg	[494 oz]

Example: PQHY-P120ZKMU



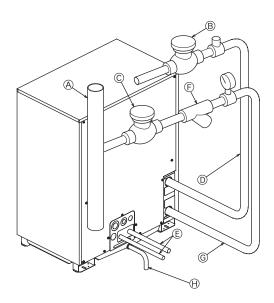
4-1. General requirements for installation

- 1. If possible, locate the unit to reduce the direct thermal radiation to the unit.
- Consider the amount of noise the unit produces when choosing an installation location.
 Valves and refrigerant flow on the outdoor/heat source unit may generate noise.
- 3. Avoid sites that may encounter strong winds.
- 4. Ensure the installation site can bear the weight of the unit.
- 5. Condensation should be moved away from the unit, particularly in heating mode.
- 6. Provide enough space for installation and service as shown in section .
- 7. Avoid sites where acidic solutions or chemical sprays (such as sulfur sprays) are used frequently.
- 8. The unit should be provided from combustible gas, oil, steam, chemical gas like acidic solution, sulfur gas and so on.

4-2. Spacing

In case of single installation, 600mm or more of back space as front space makes easier access when servicing the unit from rear side.

4-3. Caution on selecting heat source unit


Consult your dealer when the following issues on WY series are the key concern.

 \cdot Warm air may flow out from the indoor unit during heating Thermo-OFF.

· Refrigerant flow sound may occur in the rooms with low background noise such as hotel rooms, hospital rooms, bedrooms, or conference rooms.

To avoid the above issues on WY series, changing board settings on the indoor and outdoor units is required. Ask AC&R Works for details.

<Model : PQHY, PQRY-P-ZKMU-A>

- (A) Main circulating water pipe
- B Shutoff valve
- \bigcirc Shutoff valve
- \bigcirc Water outlet (upper)
- (F) Refrigerant pipes
- F Y-type strainer
- G Water inlet (lower)
- Drain pipe (H)

1. Insulation installation

With City Multi WY/ WR2 Series piping, as long as the temperature range of the circulating water is kept to average temperatures year-round (29.4°C[85°F] in the summer, 21.1°C[70°F] in the winter), there is no need to insulate or otherwise protect indoor piping from exposure. You should use insulation in the following situations:

- · Any heat source piping.
- Indoor piping in cold-weather regions where frozen pipes are a problem.
- · When air coming from the outside causes condensation to form on pipina.
- Any drainage piping.

2. Water processing and water quality control

To preserve water quality, use the closed type of cooling tower for WY/ WR2. When the circulating water quality is poor, the water heat exchanger can develop scales, leading to a reduction in heat-exchange power and possible corrosion of the heat exchanger. Please pay careful attention to water processing and water quality control when installing the water circulation system.

- · Removal of foreign objects or impurities within the pipes. During installation, be careful that foreign objects, such as welding
- fragments, sealant particles, or rust, do not enter the pipes. • Water Quality Processing
- ① Depending on the quality of the cold-temperature water used in the air conditioner, the copper piping of the heat exchanger may become corroded. We recommend regular water quality processing. Cold water circulation systems using open heat storage tanks are particularly prone to corrosion.

When using an open-type heat storage tank, install a water-to-water heat exchanger, and use a closed-loop circuit on the air conditioner side. If a water supply tank is installed, keep contact with air to a minimum, and keep the level of dissolved oxygen in the water no higher than 1mg/ l.

2 Water quality standard

			Lower m temperature	•	Tendency		
	Items		Recirculating water [20 <t<60°c] [68<t<140°f]< td=""><td>Make-up water</td><td>Corrosive</td><td>Scale- forming</td></t<140°f]<></t<60°c] 	Make-up water	Corrosive	Scale- forming	
	pH (25°C)[77°F]		7.0 ~ 8.0	7.0 ~ 8.0	0	0	
	Electric conductivity (n	, , , ,	30 or less	30 or less	0	0	
		IS/cm) (25°C)[77°F]					
	Chloride ion	(mg Cl⁻/ ℓ)	50 or less	50 or less	0		
Standard	Sulfate ion	(mg SO ₄ ²⁻ / ℓ)	50 or less	50 or less	0		
items	Acid consumption	50 or less	50 or less		0		
	T. (. ()	(mg CaCO ₃ /ℓ)	70	70			
	Total hardness	(mg CaCO ₃ / ℓ)	70 or less	70 or less		0	
	Calcium hardness	(mg CaCO ₃ / ℓ)	50 or less	50 or less		0	
	Ionic silica	(mg SiO₂/ ℓ)	30 or less	30 or less		0	
Refer-	Iron	(mg Fe/ ℓ)	1.0 or less	0.3 or less	0	0	
ence	Copper	(mg Cu/ ℓ)	1.0 or less	0.1 or less	0		
items	Sulfide ion	(ma 62/ /)	not to be	not to be	0		
	Suilide Ion	(mg S²-/ℓ)	detected	detected			
	Ammonium ion	(mg NH₄⁺/ℓ)	0.3 or less	0.1 or less	0		
	Residual chlorine	(mg Cl/ l)	0.25 or less	0.3 or less	0		
	Free carbon dioxide	e (mg CO ₂ / ℓ)	0.4 or less	4.0 or less	0		
	Ryzner stability ind	ex	-	-	0	0	

S.D. WY 575V

Reference : Guideline of Water Quality for Refrigeration and Air Conditioning Equipment. (JRA GL02E-1994)

- ^③ Please consult with a water quality control specialist about water quality control methods and water quality calculations before using anti-corrosive solutions for water quality management.
- ⁽⁴⁾ When replacing a previously installed air conditioning device (even when only the heat exchanger is being replaced), first conduct a water quality analysis and check for possible corrosion. Corrosion can occur in cold-water systems even if there has been no prior signs of corrosion. If the water quality level has dropped, please adjust water quality sufficiently before replacing the unit.

CITY MULTI INSTALLATION INFORMATION

- 470
- 472
- 473
- 474
•

1-1. General precautions

1-1-1. Usage

•The air-conditioning system described in this Data Book is designed for human comfort.

- •This product is not designed for preservation of food, animals, plants, precision equipment, or art objects. To prevent quality loss, do not use the product for purposes other than what it is designed for.
- •To reduce the risk of water leakage and electric shock, do not use the product for air-conditioning vehicles or vessels.

1-1-2. Installation environment

Do not install any unit other than the dedicated unit in a place where the voltage changes a lot, large amounts of mineral oil (e.g., cutting oil) are present, cooking oil may splash, or a large quantity of steam can be generated such as a kitchen.
Do not install the unit in acidic or alkaline environment.

Installation should not be performed in the locations exposed to chlorine or other corrosive gases. Avoid near a sewer.
To reduce the risk of fire, do not install the unit in a place where flammable gas may be leaked or inflammable material is present.

•This air conditioning unit has a built-in microcomputer. Take the noise effects into consideration when deciding the installation position. Especially in a place where antenna or electronic device are installed, it is recommended that the air conditioning unit be installed away from them.

•Install the unit on a solid foundation according to the local safety measures against typhoons, wind gusts, and earthquakes to prevent the unit from being damaged, toppling over, and falling.

1-1-3. Backup system

•In a place where air conditioner's malfunctions may exert crucial influence, it is recommended to have two or more systems of single outdoor/heat source units with multiple indoor units.

1-1-4. Unit characteristics

•Heat pump efficiency of outdoor unit depends on outdoor temperature. In the heating mode, performance drops as the outside air temperature drops. In cold climates, performance can be poor. Warm air would continue to be trapped near the ceiling and the floor level would continue to stay cold. In this case, heat pumps require a supplemental heating system or air circulator. Before purchasing them, consult your local distributor for selecting the unit and system.

•When the outdoor temperature is low and the humidity is high, the heat exchanger on the outdoor unit side tends to collect frost, which reduces its heating performance. To remove the frost, Auto-defrost function will be activated and the heating mode will temporarily stop for 3-10 minutes. Heating mode will automatically resume upon completion of defrost process.

•Air conditioner with a heat pump requires time to warm up the whole room after the heating operation begins, because the system circulates warm air in order to warm up the whole room.

•The sound levels were obtained in an anechoic room. The sound levels during actual operation are usually higher than the simulated values due to ambient noise and echoes. Refer to the section on "SOUND LEVELS" for the measurement location.

•Depending on the operation conditions, the unit generates noise caused by valve actuation, refrigerant flow, and pressure changes even when operating normally. Please consider to avoid location where quietness is required. For BC/HBC controller, it is recommended to unit to be installed in places such as ceilings of corridor, restrooms and plant rooms.

•The total capacity of the connected indoor units can be greater than the capacity of the outdoor/heat source unit. However, when the connected indoor units operate simultaneously, each unit's capacity may become smaller than the rated capacity.

•When the unit is started up for the first time within 12 hours after power on or after power failure, it performs initial startup operation (capacity control operation) to prevent damage to the compressor. The initial startup operation requires 90 minutes maximum to complete, depending on the operation load.

1-1-5. Relevant equipment

•Use an earth leakage breaker (ELB) with medium sensitivity, and an activation speed of 0.1 second or less. •Consult your local distributor or a qualified technician when installing an earth leakage breaker.

Consult your local distributor of a qualified technician when installing an earth leakage breaker.
 If the unit is inverter type, select an earth leakage breaker for handling high harmonic waves and surges.

Leakage current is generated not only through the air conditioning unit but also through the power wires. Therefore, the leakage current of the main power supply is greater than the total leakage current of each unit. Take into consideration the capacity of the earth leakage breaker or leakage alarm when installing one at the main power supply. To measure the leakage current simply on site, use a measurement tool equipped with a filter, and clamp all the four power wires together. The leakage current measured on the ground wire may not accurate because the leakage current from other systems may be included to the measurement value.

•Do not install a phase advancing capacitor on the unit connected to the same power system with an inverter type unit and its equipment.

•If a large current flows due to the product malfunctions or faulty wiring, both the earth leakage breaker on the product side and the upstream overcurrent breaker may trip almost at the same time. Separate the power system or coordinate all the breakers depending on the system's priority level.

1-1-6. Unit installation

•Your local distributor or a qualified technician must read the Installation Manual that is provided with each unit carefully before performing installation work.

- •Consult your local distributor or a qualified technician when installing the unit. Improper installation by an unqualified person may result in water leakage, electric shock, or fire.
- •Ensure there is enough space around each unit.

1-1-7. Optional accessories

•Only use accessories recommended by Mitsubishi Electric. Consult your local distributor or a qualified technician when installing them. Improper installation by an unqualified person may result in water leakage, electric leakage, system breakdown, or fire.

•Some optional accessories may not be compatible with the air conditioning unit to be used or may not suitable for the installation conditions. Check the compatibility when considering any accessories.

•Note that some optional accessories may affect the air conditioner's external form, appearance, weight, operating sound, and other characteristics.

1-1-8. Operation/Maintenance

•Read the Instruction Book that is provided with each unit carefully prior to use.

•Maintenance or cleaning of each unit may be risky and require expertise. Read the Instruction Book to ensure safety. Consult your local distributor or a qualified technician when special expertise is required such as when the indoor unit needs to be cleaned.

1-2. Precautions for Indoor unit and BC controller

1-2-1. Operating environment

•The refrigerant (R410A) used for air conditioner is non-toxic and nonflammable. However, if the refrigerant leaks, the oxygen level may drop to harmful levels. If the air conditioner is installed in a small room, measures must be taken to prevent the refrigerant concentration from exceeding the safety limit even if the refrigerant should leak. •If the units operate in the cooling mode at the humidity above 80%, condensation may collect and drip from the indoor units.

1-2-2. Unit characteristics

•The return air temperature display on the remote controller may differ from the ones on the other thermometers.

•The clock on the remote controller may be displayed with a time lag of approximately one minute every month.

•The temperature using a built-in temperature sensor on the remote controller may differ from the actual room temperature due to the effect of the wall temperature.

•Use a built-in thermostat on the remote controller or a separately-sold thermostat when indoor units installed on or in the ceiling operate the automatic cooling/heating switchover.

•The room temperature may rise drastically due to Thermo OFF in the places where the air conditioning load is large such as computer rooms.

•Be sure to use a regular filter. If an irregular filter is installed, the unit may not operate properly, and the operation noise may increase.

•The room temperature may rise over the preset temperature in the environment where the heating air conditioning load is small.

1-2-3. Unit installation

•For simultaneous cooling/heating operation type air conditioners (R2, H2i R2, WR2 series), the G-type BC controller cannot be connected to the P144 outdoor/heat source unit model or above, and the G- and GA-type BC controllers cannot be connected to the P264 model or above. The GB- and HB-type BC controllers (sub) cannot be connected to the outdoor/heat source unit directly, and be sure to use them with GA- and HA-type BC controllers (main).

•The insulation for low pressure pipe between the BC controller and outdoor/heat source unit shall be at least 20 mm thick. If the unit is installed on the top floor or in a high-temperature, high-humidity environment, thicker insulation may be necessary.

•Do not have any branching points on the downstream of the refrigerant pipe header.

•When a field-supplied external thermistor is installed or when a device for the demand control is used, abnormal stop of the unit or damage of the electromagnetic contactor may occur. Consult your local distributor for details.

When indoor units operate a fresh air intake, install a filter in the duct (field-supplied) to remove the dust from the air.
The 4-way or 2-way Airflow Ceiling Cassette Type units that have an outside air inlet can be connected to the duct, but need a booster fan to be installed at site. Refer to the chapter "Indoor Unit" for the available range for fresh air intake volume.

•Operating fresh air intake on the indoor unit may increase the sound pressure level.

1-3. Precautions for Outdoor unit/Heat source unit

1-3-1. Installation environment

- •Outdoor/heat source unit with salt-resistant specification is recommended to use in a place where it is subject to salt air. •Even when the unit with salt-resistant specification is used, it is not completely protected against corrosion. Be sure to follow the directions or precautions described in Instructions Book and Installation Manual for installation and maintenance. The salt-resistant specification is referred to the guidelines published by JRAIA (JRA9002).
- Install the unit in a place where the flow of discharge air is not obstructed. If not, the short-cycling of discharge air may occur.
- •Provide proper drainage around the unit base, because the condensation may collect and drip from the outdoor/heat source units. Provide water-proof protection to the floor when installing the units on the rooftop.
- •In a region where snowfall is expected, install the unit so that the outlet faces away from the direction of the wind, and install a snow guard to protect the unit from snow. Install the unit on a base approximately 50 cm higher than the
- expected snowfall. Close the openings for pipes and wiring, because the ingress of water and small animals may cause equipment damage. If SUS snow guard is used, refer to the Installation Manual that comes with the snow guard and take caution for the installation to avoid the risk of corrosion.
- •When the unit is expected to operate continuously for a long period of time at outside air temperatures of below 0°C, take appropriate measures, such as the use of a unit base heater, to prevent icing on the unit base. (Not applicable to the PUMY-P-NHMU series)
- •Install the snow guard so that the outlet/inlet faces away from the direction of the wind.
- •When the snow accumulates approximately 50 cm or more on the snow guard, remove the snow from the guard. Install a roof that is strong enough to withstand snow loads in a place where snow accumulates.
- •Provide proper protection around the outdoor/heat source units in places such as schools to avoid the risk of injury.
- •A cooling tower and heat source water circuit should be a closed circuit that water is not exposed to the atmosphere. When a tank is installed to ensure that the circuit has enough water, minimize the contact with outside air so that the oxygen from being dissolved in the water should be 1 mg/L or less.
- +Install a strainer (50 mesh or more recommended) on the water pipe inlet on the heat source unit.
- •Interlock the heat source unit and water circuit pump.
- •Note the followings to prevent the freeze bursting of pipe when the heat source unit is installed in a place where the ambient temperature can be 0°C or below.
- •Keep the water circulating to prevent it from freezing when the ambient temperature is 0°C or below.
- •Before a long period of non use, be sure to purge the water out of the unit.
- •Salt-resistant unit is resistant to salt corrosion, but not salt-proof.
- Please note the following when installing and maintaining outdoor units in marine atmosphere.
- 1. Install the salt-resistant unit out of direct exposure to sea breeze, and minimize the exposure to salt water mist.
- 2. Avoid installing a sun shade over the outdoor unit, so that rain will wash away salt deposits off the unit.
- 3. Install the unit horizontally to ensure proper water drainage from the base of the unit. Accumulation of water in the base of the outdoor unit will significantly accelerate corrosion.
- 4. Periodically wash salt deposits off the unit, especially when the unit is installed in a coastal area.
- 5. Repair all noticeable scratches after installation and during maintenance.
- 6. Periodically check the unit, and apply anti-rust agent and replace corroded parts as necessary.

1-3-2. Circulating water

•Follow the guidelines published by JRAIA (JRA-GL02-1994) to check the water quality of the water in the heat source unit regularly.

•A cooling tower and heat source water circuit should be a closed circuit that water is not exposed to the atmosphere. When a tank is installed to ensure that the circuit has enough water, minimize the contact with outside air so that the oxygen from being dissolved in the water should be 1 mg/L or less.

1-3-3. Unit characteristics

•When the Thermo ON and OFF is frequently repeated on the indoor unit, the operation status of outdoor/heat source units may become unstable.

1-3-4. Relevant equipment

•Provide grounding in accordance with the local regulations.

1-4. Precautions for Control-related items

1-4-1. Product specification

•To introduce the MELANS system, a consultation with us is required in advance. Especially to introduce the electricity charge apportioning function or energy-save function, further detailed consultation is required. Consult your local distributor for details.

•Billing calculation for AE-200A/AE-50A/EW-50A/AG-150A-A/EB-50GU-A/TG-2000A, or the billing calculation unit is unique and based on our original method. (Backup operation is included.) It is not based on the metering method, and do not use it for official business purposes. It is not the method that the amount of electric power consumption (input) by air conditioner is calculated. Note that the electric power consumption by air conditioner is apportioned by using the ratio corresponding to the operation status (output) for each air conditioner (indoor unit) in this method.

•In the apportioned billing function for AE-200A/AE-50A/EW-50A/AG-150A-A and EB-50GU-A, use separate watthour meters for A-control units, K-control units^{*1.}, and packaged air conditioner for City Multi air conditioners. It is recommended to use an individual watthour meter for the large-capacity indoor unit (with two or more addresses).

•When using the peak cut function on the AE-200A/AE-50A/EW-50A/AG-150A-A or EB-50GU-A, note that the control is performed once every minute and it takes time to obtain the effect of the control. Take appropriate measures such as lowering the criterion value. Power consumption may exceed the limits if AE-200A/AE-50A/EW-50A/AG-150A-A or EB-50GU-A malfunctions or stops. Provide a back-up remedy as necessary.

•The controllers cannot operate while the indoor unit is OFF. (No error)

Turn ON the power to the indoor unit when operating the controllers.

•When using the interlocked control function on the AE-200A/AE-50A/EW-50A/AG-150A-A/EB-50GU-A/PAC-YG66DCA or PAC-YG63MCA, do not use it for the control for the fire prevention or security. (This function should never be used in the way that would put people's lives at risk.) Provide any methods or circuit that allow ON/OFF operation using an external switch in case of failure.

1-4-2. Installation environment

•The surge protection for the transmission line may be required in areas where lightning strikes frequently occur.

•A receiver for a wireless remote controller may not work properly due to the effect of general lighting. Leave a space of at least 1 m between the general lighting and receiver.

•When the Auto-elevating panel is used and the operation is made by using a wired remote controller, install the wired remote controller to the place where all air conditioners controlled (at least the bottom part of them) can be seen from the wired remote controller. If not, the descending panel may cause damage or injury, and be sure to use a wireless remote controller designed for use with elevating panel (sold separately).

+Install the wired remote controller (switch box) to the place where the following conditions are met.

- •Where installation surface is flat
- •Where the remote controller can detect an accurate room temperature

The temperature sensors that detect a room temperature are installed both on the remote controller and indoor unit. When a room temperature is detected using the sensor on the remote controller, the main remote controller is used to detect a room temperature. In this case, follow the instructions below.

• Install the controller in a place where it is not subject to the heat source.

(If the remote controller faces direct sunlight or supply air flow direction, the remote controller cannot detect an accurate room temperature.)

- Install the controller in a place where an average room temperature can be detected.
- Install the controller in a place where no other wires are present around the temperature sensor.

(If other wires are present, the remote controller cannot detect an accurate room temperature.)

•To prevent unauthorized access, always use a security device such as a VPN router when connecting AE-200A/AE-50A/EW-50A/AG-150A/EB-50GU-A or TG-2000A to the Internet.

*1.EB-50GU-A, AE-200A, AE-50A, and EW-50A cannot be used to control K-control units.

CITY MULTI CAUTION FOR REFRIGERANT LEAKAGE

1.	Caution for refrigerant leakage	4 - 4	176
	1-1.Refrigerant property	4 - 4	176
	1-2.Confirm the Critical concentration and take countermeasure	4 - 4	176

1. Caution for refrigerant leakage

The installer and/or air conditioning system specialist shall secure safety against refrigerant leakage according to local regulations or standards. The following standard may be applicable if no local regulation or standard is available.

1-1. Refrigerant property

R410A refrigerant is harmless and incombustible. The R410A is heavier than the indoor air in density. Leakage of the refrigerant in a room has possibility to lead to a hypoxia situation. Therefore, the critical concentration specified below shall not be exceeded even if the leakage happens.

Critical concentration

Critical concentration hereby is the refrigerant concentration in which no human body would be hurt if immediate measures can be taken when refrigerant leakage happens.

Critical concentration of R410A: 0.44kg/m³

(The weight of refrigeration gas per 1 m³ air conditioning space.); * The Critical concentration is subject to ISO5149, EN378-1.

^a The Critical concentration is subject to ISO5149, EN378-1.

For the CITY MULTI system, the concentration of refrigerant leaked should not have a chance to exceed the critical concentration in any situation.

1-2. Confirm the Critical concentration and take countermeasure

The maximum refrigerant leakage concentration (Rmax) is defined as the result of the possible maximum refrigerant weight (Wmax) leaked into a room divided by its room capacity (V). It is referable to Fig.1-1. The refrigerant of Outdoor/Heat source unit here includes its original charge and additional charge at the site.

The additional charge is calculated according to the refrigerant charging calculation of each kind of Outdoor/Heat source unit, and shall not be over charged at the site. Procedure 1-2-1~3 tells how to confirm maximum refrigerant leakage concentration (Rmax) and how to take countermeasures against a possible leakage.

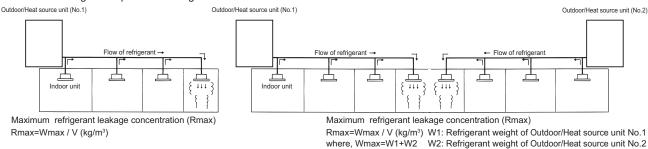


Fig. 1-1 The maximum refrigerant leakage concentration

1-2-1.Find the room capacity (V),

If a room having total opening area more than 0.15% of the floor area at a low position with another room/space, the two rooms/space are considered as one. The total space shall be added up.

- 1-2-2. Find the possible maximum leakage (Wmax) in the room. If a room has Indoor unit(s) from more than 1 Outdoor/Heat source unit, add up the refrigerant of the Outdoor/Heat source units.
- 1-2-3.Divide (Wmax) by (V) to get the maximum refrigerant leakage concentration (Rmax).

1-2-4. Find if there is any room in which the maximum refrigerant leakage concentration (Rmax) is over 0.44kg/m³.

If no, then the CITY MULTI is safe against refrigerant leakage.

If yes, following countermeasure is recommended to do at site.

Countermeasure 1: Let-out (making V bigger)

Design an opening of more than 0.15% of the floor area at a low position of the wall to let out the refrigerant whenever leaked. e.g.make the upper and lower seams of door big enough.

Countermeasure 2: Smaller total charge (making Wmax smaller)

- e.g.Avoid connecting more than 1 Outdoor/Heat source unit to one room.
- e.g.Using smaller model size but more Outdoor/Heat source units.

e.g.Shorten the refrigerant piping as much as possible.

Countermeasure 3: Fresh air in from the ceiling (Ventilation)

As the density of the refrigerant is bigger than that of the air. Fresh air supply from the ceiling is better than air exhausting from the ceiling. Fresh air supply solution refers to Fig.1-2~4.

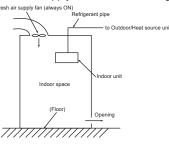
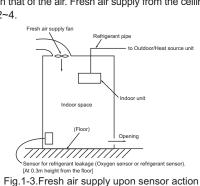



Fig.1-2.Fresh air supply always ON

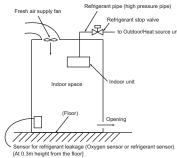


Fig.1-4.Fresh air supply and refrigerant shut-off upon sensor action

Note 1. Countermeasure 3 should be done in a proper way in which the fresh air supply shall be on whenever the leakage happens. Note 2. In principle, MITSUBISHI ELECTRIC requires proper piping design, installation and air-tight testing after installation to avoid leakage happening. In the area should earthquake happen, anti-vibration measures should be fully considered. The piping should consider the extension due to the temperature variation.