SPLIT-TYPE, HEAT PUMP AIR CONDITIONERS

TECHNICAL \& SERVICE MANUAL

[Model Name]	[Service Ref.]	
<Outdoor unit>	MXZ-4C36NAHZ	MXZ-4C36NAHZ-U1
MXZ-4C36NAHZ	MXZ-5C42NAHZ	MXZ-5C42NAHZ-U1
MXZ-5C42NAHZ	MXZ-8C48NAHZ	MXZ-8C48NAHZ-U1
MXZ-8C48NAHZ	MXZ-8C48NA	MXZ-8C48NA-U1
MXZ-8C48NA	MXZ-8C60NA-U1	
MXZ-8C60NA		
<Branch box>	PAC-MKA50BC	
PAC-MKA50BC	PAC-MKA30BC	
PAC-MKA30BC	PAC-MKA51BC	
PAC-MKA51BC	PAC-MKA31BC	
PAC-MKA31BC		

Revision:

- Some descriptions have been modified in REVISED EDITION-G.

OCH573F is void.

Notes:

- This service manual describes technical data of outdoor unit and branch box. As for indoor units, refer to its service manual.

OUTDOOR UNIT: MXZ-4C36NAHZ

CONTENTS
TECHNICAL CHANGES 2

1. SAFETY PRECAUTION 3
2. OVERVIEW OF UNITS 6
3. SPECIFICATIONS 10
4. DATA 14
5. OUTLINES AND DIMENSIONS 36
6. WIRING DIAGRAM 40
7. NECESSARY CONDITIONS FOR SYSTEM CONSTRUCTION 47
8. TROUBLESHOOTING 52
9. PRECAUTIONS AGAINST REFRIGERANT LEAKAGE 140
10. DISASSEMBLY PROCEDURE 141
PARTS CATALOG (OCB573)

TECHNICAL CHANGES

Service ref. have been changed as follows.

MXZ-4C36NAHZ		MXZ-4C36NAHZ-U1
MXZ-5C42NAHZ		MXZ-5C42NAHZ-U1
MXZ-8C48NAHZ		MXZ-8C48NAHZ-U1
MXZ-8C48NA		M

- The shape of piping around a stop valve (T7W E04 410) has been changed.
- The shape of valve bed has been changed.

1 SAFETY PRECAUTION

1-1. ALWAYS OBSERVE FOR SAFETY

Before obtaining access to terminal, all supply circuit must be disconnected.

Preparation before the repair service

- Prepare the proper tools.
- Prepare the proper protectors.
- Provide adequate ventilation.
- After stopping the operation of the air conditioner, turn off the power-supply breaker.
- Discharge the condenser before the work involving the electric parts.

Precautions during the repair service

- Do not perform the work involving the electric parts with wet hands.
- Do not pour water into the electric parts.
- Do not touch the refrigerant.
- Do not touch the hot or cold areas in the refrigerating cycle.
- When the repair or the inspection of the circuit needs to be done without turning off the power, exercise great caution not to touch the live parts.
- When opening or closing the valve below freezing temperatures, refrigerant may spurt out from the gap between the valve stem and the valve body, resulting in injuries.

1-2. CAUTIONS RELATED TO NEW REFRIGERANT
 Cautions for units utilizing refrigerant R410A

Use new refrigerant pipes.

> Make sure that the inside and outside of refrigerant piping is clean and it has no contaminants such as sulfur, oxides, dirt, shaving particles, etc., which are hazard to refrigerant cycle. In addition, use pipes with specified thickness.

Contamination inside refrigerant piping can cause deterioration of refrigerant oil, etc.

Store the piping indoors, and keep both ends of the piping sealed until just before brazing. (Leave elbow joints, etc. in their packaging.)

If dirt, dust or moisture enters into refrigerant cycle, that can cause deterioration of refrigerant oil or malfunction of compressor.

> The refrigerant oil applied to flare and flange connections must be ester oil, ether oil or alkylbenzene oil in a small amount.

If large amount of mineral oil enters, that can cause deterioration of refrigerant oil, etc.

Charge refrigerant from liquid phase of gas cylinder.

If the refrigerant is charged from gas phase, composition change may occur in refrigerant and the efficiency will be lowered.

Do not use refrigerant other than R410A.

If other refrigerant (R22, etc.) is used, chlorine in refrigerant can cause deterioration of refrigerant oil, etc.

> Ventilate the room if refrigerant leaks during operation. If refrigerant comes into contact with a flame, poisonous gases will be released.

Use a vacuum pump with a reverse flow check valve.

Vacuum pump oil may flow back into refrigerant cycle and that can cause deterioration of refrigerant oil, etc.

Use the following tools specifically designed for use with R410A refrigerant.

The following tools are necessary to use R410A refrigerant.

Tools for R410A	
Gauge manifold	Flare tool
Charge hose	Size adjustment gauge
Gas leak detector	Vacuum pump adaptor
Torque wrench	Electronic refrigerant charging scale

Handle tools with care.

If dirt, dust or moisture enters into refrigerant cycle, that can cause deterioration of refrigerant oil or malfunction of compressor.

Use the specified refrigerant only.

Never use any refrigerant other than that specified.

Doing so may cause a burst, an explosion, or fire when the unit is being used, serviced, or disposed of.
Correct refrigerant is specified in the manuals and on the spec labels provided with our products.
We will not be held responsible for mechanical failure, system malfunction, unit breakdown or accidents caused by failure to follow the instructions.

Do not use a charging cylinder.

If a charging cylinder is used, the composition of refrigerant will change and the efficiency will be lowered.

[1] Cautions for service

(1) Perform service after recovering the refrigerant left in unit completely.
(2) Do not release refrigerant in the air.
(3) After completing service, charge the cycle with specified amount of refrigerant.
(4) If moisture or foreign matter might have entered the refrigerant piping during service, ensure to remove them.

[2] Additional refrigerant charge

When charging directly from cylinder
(1) Check that cylinder for R410A on the market is a syphon type.
(2) Charging should be performed with the cylinder of syphon stood vertically. (Refrigerant is charged from liquid phase.)

[3] Service tools
(1) Use the below service tools as exclusive tools for R410A refrigerant.

No.	Tool name	Specifications
1	Gauge manifold	-Only for R410A -Use the existing fitting specifications. (UNF1/2) -Use high-tension side pressure of 768.7 PSIG [5.3 MPaG] or over.
2	Charge hose	-Only for R410A -Use pressure performance of 738.2 PSIG [5.09MPaG] or over.
3	Electronic weighing scale	-
4	Gas leak detector	Use the detector for R134a, R407C or R410A.
5	Adaptor for reverse flow check	Attach on vacuum pump.
6	Refrigerant charge base	- Only for R410A -Thp of cylinder (Pink) -Cylinder with syphon
7	Refrigerant cylinder	
8	Refrigerant recovery equipment	

1-3. Cautions for refrigerant piping work

New refrigerant R410A is adopted for replacement inverter series. Although the refrigerant piping work for R410A is the same as for R22, exclusive tools are necessary so as not to mix with different kind of refrigerant. Furthermore as the working pressure of R410A is 1.6 times higher than that of R22, their sizes of flared sections and flare nuts are different.
(1) Thickness of pipes

Since the working pressure of R410A is higher compared to R22, be sure to use refrigerant piping with thickness shown below. (Never use pipes of $7 / 256$ in [0.7 mm] or below.)
Diagram below: Piping diameter and thickness

Nominal	Outside	Thickness: in $[\mathrm{mm}]$	
dimensions (inch)	diameter (mm)	R410A	R22
$1 / 4$	6.35	$1 / 32[0.8]$	$1 / 32[0.8]$
$3 / 8$	9.52	$1 / 32[0.8]$	$1 / 32[0.8]$
$1 / 2$	12.70	$1 / 32[0.8]$	$1 / 32[0.8]$
$5 / 8$	15.88	$5 / 128[1.0]$	$5 / 128[1.0]$
$3 / 4$	19.05	-	$5 / 128[1.0]$

(2) Dimensions of flare cutting and flare nut

The component molecules in HFC refrigerant are smaller compared to conventional refrigerants. In addition to that, R410A is a refrigerant, which has higher risk of leakage because its working pressure is higher than that of other refrigerants. Therefore, to enhance airtightness and strength, flare cutting dimension of copper pipe for R410A has been specified separately from the dimensions for other refrigerants as shown below. The dimension B of flare nut for R410A also has partly been changed to increase strength as shown below. Set copper pipe correctly referring to copper pipe flaring dimensions for R410A below. For $1 / 2$ and $5 / 8$ inch pipes, the dimension B changes.
Use torque wrench corresponding to each dimension.

Flare cutting dimensions		Unit: in [mm]	
Nominal	Outside	Dimension A	
dimensions (in)	diameter (mm)	R410A	R22
1/4	6.35	11/32-23/64 [9.1]	9.0
3/8	9.52	1/2-33/64 [13.2]	13.0
1/2	12.70	41/64-21/32 [16.6]	16.2
5/8	15.88	49/64-25/32 [19.7]	19.4
3/4	19.05	-	23.3

Dimension B

Flare nut dimensions		Unit: in [mm]	
Nominal	Outside	Dimens	
dimensions (in)	diameter (mm)	R410A	R22
1/4	6.35	43/64 [17.0]	17.0
3/8	9.52	$7 / 8$ [22.0]	22.0
1/2	12.70	1-3/64 [26.0]	24.0
5/8	15.88	1-9/64 [29.0]	27.0
3/4	19.05	-	36.0

(3) Tools for R410A (The following table shows whether conventional tools can be used or not.)

Tools and materials	Use	R410A tools	Can R22 tools be used?	Can R407C tools be used?
Gauge manifold	Air	Tool exclusive for R410A	\times	\times
Charge hose	charge and operation check	Tool exclusive for R410A	\times	\times
Gas leak detector	Gas leak check	Tool for HFC refrigerant	\times	\bigcirc
Refrigerant recovery equipment	Refrigerant recovery	Tool exclusive for R410A	\times	\times
Refrigerant cylinder	Refrigerant charge	Tool exclusive for R410A	\times	\times
Applied oil	Apply to flared section	Ester oil, ether oil and alkylbenzene oil (minimum amount)	\times	Ester oil, ether oil: Alkylbenzene oil: minimum amount
Safety charger	Prevent compressor malfunction when charging refrigerant by spraying liquid refrigerant	Tool exclusive for R410A	\times	\times
Charge valve	Prevent gas from blowing out when detaching charge hose	Tool exclusive for R410A	\times	\times
Vacuum pump	Vacuum drying and air purge	Tools for other refrigerants can be used if equipped with adopter for reverse flow check	Δ (Usable if equipped with adopter for reverse flow)	Δ (Usable if equipped with adopter for reverse flow)
Flare tool	Flaring work of piping	Tools for other refrigerants can be used by adjusting flaring dimension	Δ (Usable by adjusting flaring dimension)	Δ (Usable by adjusting flaring dimension)
Bender	Bend the pipes	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Pipe cutter	Cut the pipes	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Welder and nitrogen gas cylinder	Weld the pipes	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Refrigerant charging scale	Refrigerant charge	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Vacuum gauge or thermistor vacuum gauge and vacuum valve	Check the degree of vacuum. (Vacuum valve prevents back flow of oil and refrigerant to thermistor vacuum gauge)	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Charging cylinder	Refrigerant charge	Tool exclusive for R410A	\times	-

\times : Prepare a new tool. (Use the new tool as the tool exclusive for R410A.)
Δ : Tools for other refrigerants can be used under certain conditions.
O : Tools for other refrigerants can be used.

2 OVERVIEW OF UNITS

2-1. SYSTEM CONSTRUCTION

Outdoor unit			MXZ-4C36NAHZ(-U1)	MXZ-5C42NAHZ(-U1)	$\begin{gathered} \text { MXZ-8C48NAHZ(-U1) } \\ \text { MXZ-8C48NA(-U1) } \\ \hline \end{gathered}$	MXZ-8C60NA-U1			
			4HP	4.5HP	5HP	7HP			
	Rated capacity (kBtu/h)	Cooling	36	42	48	60			
		Heating	45	48	54	66			
		Refrigerant							
Connectable indoor unit	Capacity class		Type 06 to Type 36Caution: The indoor unit which rated capacity exceeds $36 \mathrm{kBtu} / \mathrm{h}$ (Type 36) can NOT be connected.						
	Number of units					2(*1) to 4 units	$2{ }^{* 1}$) to 5 units	2(*1) to 8 units	$2(* 1)$ to 8 units
	Total system wide capacity		33 to 130\% of outdoor unit capacity (12 to $46.8 \mathrm{kBtu} / \mathrm{h}$)	29 to 130% of outdoor unit capacity (12 to $54.6 \mathrm{kBtu} / \mathrm{h}$)	25 to 130% of outdoor unit capacity (12 to $62.4 \mathrm{kBtu} / \mathrm{h}$)	20 to 130% of outdoor unit capacity (12 to $78 \mathrm{kBtu} / \mathrm{h}$)			
Connectable branch box	Number of units		1 or 2 units						

Connectable indoor unit lineups (Heat pump inverter type)									
Model type	Model name	Capacity class [kBtu/h]							
		06	09	12	15	18	24	30	36
Deluxe Wall-mounted	MSZ-FE09/12/18NA		\bigcirc	\bigcirc		\bigcirc			
	MSZ-FH06/09/12/15NA, 18NA2	-	-	\bigcirc	\bigcirc	-			
Designer	MSZ-EF09/12/15/18NA(W/B/S)		\bigcirc	\bigcirc	\bigcirc	O			
Standard Wall-mounted	MSZ-GE06/09/12/15/18/24NA	O	\bigcirc	\bigcirc	\bigcirc	-	-		
	MSZ-GL06/09/12/15/18/24NA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc		
Low static ducted*3*4	SEZ-KD09/12/15/18NA		\bigcirc	-	\bigcirc	,			
P-series mid static ducted*3 *4	PEAD-A24/30/36AA5						-	\bigcirc	\bigcirc
	PEAD-09/12/15/18/24/30/36AA7		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
1-way cassette	MLZ-KP09/12/18NA		-	-)			
P-series 22*22 4-way cassette	SLZ-KA09/12/15NA		-	\bigcirc	,				
	SLZ-KF09/12/15NA		\bigcirc	-	-				
P-series 33*33 4-way cassette	PLA-A12/18/24/30/36BA6			\bigcirc				-	\bigcirc
	PLA-A12/18/24/30/36EA7*5			-)	,	\bigcirc	\bigcirc
Floor standing	MFZ-KA09/12/18NA		-	\bigcirc)			
	MFZ-KJ09/12/15/18NA		\bigcirc	\bigcirc	\bigcirc	,			
Standard Multi-position air handler*2	MVZ-A12/18/24/30/36AA4			-))	-	\bigcirc
Branch box	PAC-MKA50BC PAC-MKA51BC			PAC-MKA30BC PAC-MKA31BC					
Number of branches (Indoor unit that can be connected)	5 branches (MAX. 5 units)			3 branches (MAX. 3 units)					

Note: A maximum of 2 branch boxes can be connected to 1 outdoor unit.

2- branch pipe (joint): Optional parts

 In case of using 1- branch box| No need | | |
| :--- | :--- | :--- |
| Model name | Connection method | Select a model according to the
 connection method. |
| MSDD-50AR-E | flare | |
| MSDD-50BR-E | brazing | |

Option

 Optional accessories for indoor units and outdoor units are available.*1 Only one unit connection is possible with ducted unit.
*2 When connecting a multi-position unit(s), set additional constraints as follows. For connections other than those specified below, consult your dealer.

- Models other than MXZ-8C60NA (For each connected branch box)

Number of connecting multi-position unit	Constraints
2	Any indoor units other than ducted units are not
connectable.	

Number of connecting multi-position unit	Constraints
2	Any indoor units other than ducted unit are not
connectable.	

[^0]OCH573G

2-2. SYSTEM OUTLINE

The additional connection of the branch box together with employment of the compact trunk-looking outdoor unit can successfully realize a long distance piping for large houses. Equipped with a microprocessor, the branch box can translate the transmission signal of indoor units to achieve the optimum control.

2-2-1. System example

2-2-2. Method for identifying

- Outdoor unit
\qquad Number of connectable indoor units (MAX.)

M X Z-8 C 48 NA H Z-U1 Sub-number
Control and refrigerant
A : New A control and R410A
Power supply
N: Single phase $208 / 230 \mathrm{~V} 60 \mathrm{~Hz}$
Indicates equivalent to rated cooling capacity. (kBtu/h)
Multi type heat pump inverter outdoor unit

- Branch box

2-3. TYPICAL COMBINATION EXAMPLE

Branch box is located INSIDE of condominium

System example of 5 indoor units

- Verification

The rated capacity should be determined by observing the table below. The unit's quantities are limited to 1(*) to 8 units. For the next step, make sure that the selected total rated capacity is 130% or less of outdoor unit capacity. The total indoor unit capacity should be within the outdoor units. ($=100 \%$ of outdoor unit capacity is preferred). Combination of excessive indoor units and an outdoor unit may reduce the capacity of each indoor unit.
*Single unit connection is possible only with multi-position unit. Connect 2 or more units for models other than multiposition unit.

Example:

$\left.\begin{array}{lc}\text { SEZ-18 } & =18 \\ \\ \text { MSZ-12 } & =12 \\ \text { MSZ-12 } & + \\ & 12 \\ \\ \text { MSZ-09 } & \left.=\begin{array}{c}9 \\ \\ \\ \text { MSZ-09 } \\ \\ \\ \hline\end{array}\right\} \text { Total rated capacity }\end{array}\right\} 60 \leqq 62.4 \mathrm{kBtu} / \mathrm{h}$

Indoor unit type (capacity class)	06	09	12	15	18	24	30	36
Rated capacity (cooling) (kBtu/h)	6	9	12	15	18	24	30	36

2-4. SIMPLIFIED PIPING SYSTEM

Piping connection size

	A	B
Liquid	ø3/8 inch [9.52 mm]	The piping connection size differs according to the type and capacity of indoor units. Match the piping connection size of branch box with indoor unit. If the piping connection size of branch box does not match the piping connection size of indoor unit, use optional different-diameter (deformed) joints to the branch box side. (Connect deformed joint directly to the branch box side.)
Gas	$\begin{gathered} \varnothing 5 / 8 \text { inch } \\ {[15.88 \mathrm{~mm}]} \end{gathered} / \begin{aligned} & \varnothing 3 / 4 \mathrm{inch}^{*} \\ & {[19.05 \mathrm{~mm}]} \end{aligned}$	

* MXZ-8C60NA only

Flare connection employed. (No brazing!)

- In case of using 1-branch box

Flare connection employed (No brazing)

- In case of using 2-branch boxes

■ Installation procedure (2 branches pipe (joint))
Refer to the installation manuals of MSDD-50AR-E and MSDD-50BR-E.

3 SPECIFICATIONS

3-1. OUTDOOR UNIT:
 MXZ-4C36/5C42/8C48NAHZ(-U1), MXZ-8C48NA(-U1), MXZ-8C60NA-U1

Service Ref.					MXZ-4C36NAHZ(-U1)			MXZ-5C42NAHZ(-U1)		
	Indoor type				Non-Ducted	Mix	Ducted	Non-Ducted	Mix	Ducted
	$\begin{aligned} & \text { 을 } \\ & \hline \bar{O} \\ & \hline \end{aligned}$	Capacity Rated*1		Btu/h	36,000	36,000	36,000	42,000	42,000	42,000
		Rated power consumption*1		W	2,570	2,845	3,180	3,130	3,470	3,890
		EER		Btu/Wh	14.00	12.65	11.30	13.40	12.10	10.80
		SEER		Btu/Wh	19.1	17.5	15.8	19.0	17.0	15.0
	\square	Capacity Rated $47^{\circ} \mathrm{F}^{* 1}$		Btu/h	45,000	45,000	45,000	48,000	48,000	48,000
		Capacity Max. $17^{\circ} \mathrm{F}^{* 2}$		Btu/h	45,000	45,000	45,000	48,000	48,000	48,000
		Capacity Max. $5^{\circ} \mathrm{F}$		Btu/h	45,000	45,000	45,000	48,000	48,000	48,000
		Rated power consumption $47^{\circ} \mathrm{F}^{* 1}$		W	3,340	3,795	4,250	3,430	3,890	4,350
		COP $47{ }^{\circ} \mathrm{F}^{* 1}$		Btu/Wh	3.95	3.48	3.10	4.10	3.62	3.23
		HSPF IV/V		Btu/Wh	11.3/9.2	10.7/8.9	10.1/8.5	11.0/9.1	10.6/9.0	10.1/8.8
	Connectable indoor units (Max.)				4			5		
	Max. Connectable Capacity			Btu/h	46,000			54,000		
	Power supply				1 Phase 208/230 V, 60 Hz					
	Breaker Size/Max. fuse size				$50 \mathrm{~A} / 52 \mathrm{~A}$50 A (for the models with U1)					
	Min. circuit ampacity				42 A					
	Sound level (Cool/Heat) $\mathrm{dB}^{\text {a }}$				49/53			50/54		
	External finish				Munsell 3Y 7.8/ 1.1					
	Refrigerant control				Linear Expansion Valve					
	Compressor ${ }^{\text {Model }}$				Hermetic					
					ANB33FJSMT					
			Motor output	kW	2.8			3.0		
	Starting method				Inverter					
	Heat exchanger				Cross fin and tube					
	Fan		Fan (drive) \times No.		Propeller fan $\times 2$					
			Fan motor output	kW	$\begin{gathered} 0.06+0.06 \\ 0.074+0.074 \text { (for the models with U1) } \end{gathered}$					
			Airflow	$\begin{aligned} & \mathrm{m}^{3} / \mathrm{min} \\ & \text { (CFM) } \end{aligned}$	110 (3885)					
	Dimensions		Width	in (mm)	41-11/32 (1050)					
			Depth	in (mm)	13+1 (330+25)					
			Height	in (mm)	52-11/16 (1338)					
					276 (125)					
					R410A					
			Charge	lb (kg)	$10 \mathrm{lbs} .9 \mathrm{oz}$. (4.8)					
			Oil volume/Model	oz (L)	78 (2.3)/Ethereal oil (FV50S)					
	Protection devices		High pressure protection		HP switch					
			Compressor protection		Compressor thermo, Overcurrent detection					
			Fan motor protection		Overheating/Voltage protection					
	Guaranteed operation range			(cool)	D.B 23 to $115^{\circ} \mathrm{F}$ [D.B. -5 to $46^{\circ} \mathrm{C}$] *3					
				(heat)	D.B. -13 to $70^{\circ} \mathrm{F}$ [D.B. -25 to $21^{\circ} \mathrm{C}$]					
	Total Piping length (Max.)			ft (m)	492 (150)					
	Farthest			ft (m)						
	Max. Height difference			$\mathrm{ft}(\mathrm{m})$	$164(50)^{* 4}$					
	Chargeless length			$\mathrm{ft}(\mathrm{m})$	0					
	Piping diameter		Liquid	inch (mm)	ø3/8 (9.52)					
			Gas	inch (mm)	ø5/8 (15.88)					
	Connection method		Indoor side		Flared					
			Outdoor side		Flared					

[^1]

*1 Rating conditions	Cooling	Indoor	: D.B. $80^{\circ} \mathrm{F} /$ W.B. $67{ }^{\circ} \mathrm{F}$ [D.B. $26.7^{\circ} \mathrm{C} /$ W.B. $19.4{ }^{\circ} \mathrm{C}$]
		Outdoor	: D.B. $95^{\circ} \mathrm{F}$ [D.B. $\left.35.0^{\circ} \mathrm{C}\right]$
	Heating	Indoor	: D.B. $70^{\circ} \mathrm{F}$ [D.B. $\left.21.1^{\circ} \mathrm{C}\right]$
		Outdoor	: D.B. $47^{\circ} \mathrm{F} / \mathrm{W} . \mathrm{B} .43^{\circ} \mathrm{F}$ [D.B. $\left.8.3^{\circ} \mathrm{C} / \mathrm{W} . \mathrm{B} .6 .1^{\circ} \mathrm{C}\right]$
*2 Conditions	Heating	Indoor	: D.B. $70^{\circ} \mathrm{F}$ [D.B. $21.1^{\circ} \mathrm{C}$]
		Outdoor	: D.B. $17^{\circ} \mathrm{F} / \mathrm{W}$. B. $15^{\circ} \mathrm{F}$ [D.B. $-8.3^{\circ} \mathrm{C} / \mathrm{W}$. B. $-9.4^{\circ} \mathrm{C}$]

${ }^{* 3}$ D.B. 5 to 115° F [D.B. -15 to $46^{\circ} \mathrm{C}$], when an optional Air Outlet Guide is installed.
${ }^{*} 4131 \mathrm{ft}[40 \mathrm{~m}]$, in case of installing outdoor unit lower than indoor unit.
Note: Refer to the indoor unit's service manual for the indoor units specifications.

3-2. BRANCH BOX: PAC-MKA50BC PAC-MKA51BC PAC-MKA30BC PAC-MKA31BC

Model name				PAC-MKA50BC PAC-MKA51BC	PAC-MKA30BC PAC-MKA31BC
Connectable number of indoor units				Maximum 5	Maximum 3
Power supply				Single phase, $208 / 230 \mathrm{~V}, 60 \mathrm{~Hz}$	
Input			kW	0.003	
Running current			A	0.05	
External finish				Galvanized sheets	
Dimensions	Width		inch (mm)	17-23/32 (450)	
	Depth		inch (mm)	11-1/32 (280)	
	Height		inch (mm)	6-11/16 (170)	
Weight			lb (kg)	16 (7.4)	15 (6.7)
Piping connection (Flare)	Branch (indoor side)*	Liquid	inch (mm)	$\varnothing 1 / 4(6.35) \times 5$ \{A,B,C,D,E\}	$\varnothing 1 / 4(6.35) \times 3$ \{ $A, B, C\}$
		Gas	inch (mm)	$\begin{gathered} \varnothing 3 / 8(9.52) \times 4\{A, B, C, D\}, \\ \varnothing 1 / 2(12.7) \times 1\{\mathrm{E}\} \end{gathered}$	$\varnothing 3 / 8(9.52) \times 3$ \{A,B,C\}
	Main (outdoor side)	Liquid	inch (mm)	ø3/8 (9.52)	
		Gas	inch (mm)	ø5/8 (15.88)	

*The piping connection size differs according to the type and capacity of indoor units. Match the piping connection size for indoor and branch box. If the piping connection size of branch box does not match the piping connection size of indoor units, use optional different-diameter (deformed) joints to the branch box side. (Connect deformed joint directly to the branch box side.)

4-1. SELECTION OF COOLING/HEATING UNITS

How to determine the capacity when less than or equal 100% indoor model size units are connected in total:
The purpose of this flow chart is to select the indoor and outdoor units. For other purposes, this flow chart is intended only for reference.

How to determine the capacity when greater than 100% indoor model size units are connected in total:
The purpose of this flow chart is to select the indoor and outdoor units. For other purposes, this flow chart is intended only for reference.

Design Condition	
Outdoor Design Dry Bulb Temperature	$98.6^{\circ} \mathrm{F}\left(37.0^{\circ} \mathrm{C}\right)$
Total Cooling Load	$29.6 \mathrm{kBtu} / \mathrm{h}$
Room1	$80.0^{\circ} \mathrm{F}\left(27.0^{\circ} \mathrm{C}\right)$
Indoor Design Dry Bulb Temperature	$68.0^{\circ} \mathrm{F}\left(20.0^{\circ} \mathrm{C}\right)$
Indoor Design Wet Bulb Temperature	$13.6 \mathrm{kBtu} / \mathrm{h}$
Cooling Load	$\mathbf{7 5 . 2 ^ { \circ } \mathrm { F } (2 4 . 0 ^ { \circ } \mathrm { C })}$
Room2	$66.2^{\circ} \mathrm{F}\left(19.0^{\circ} \mathrm{C}\right)$
Indoor Design Dry Bulb Temperature	$16.0 \mathrm{kBtu} / \mathrm{h}$
Indoor Design Wet Bulb Temperature	$\mathbf{2 5 0} \mathbf{~ f t}$
Cooling Load	
<Other>	
Indoor/Outdoor Equivalent Piping Length	

Rated capacity of indoor unit [kBtu/h]

Model name	Capacity class								
	06	09	12	15	18	24	30	36	
MVZ	-	-	12.0	-	18.0	24.0	30.0	36.0	
SLZ-KF	-	8.4	11.1	15.0	-	-	-	-	
SEZ-KD	-	8.1	11.5	14.1	17.2	-	-	-	
MFZ-KJ	-	9.0	12.0	15.0	17.0	-	-	-	
MLZ-KP	-	9.0	12.0	-	17.2	-	-	-	
MSZ-FH	6.0	9.0	12.0	15.0	17.2	-	-	-	
MSZ-GL	6.0	9.0	12.0	14.0	17.2	22.5	-	-	
PEAD	-	9.0	12.0	15.0	18.0	24.0	30.0	36.0	
PLA	-	-	12.0	-	18.0	24.0	30.0	36.0	

1. Cooling Calculation

(1) Temporary Selection of Indoor Units

Room1
MSZ-FH15 $\quad 15.0$ kBtu/h (Rated)

Room2
17.2 kBtu/h (Rated)
(2) Total Indoor Units Capacity $15+18=33$
(3) Selection of Outdoor Unit

The P36 outdoor unit is selected as total indoor units capacity is P33 MXZ-4C36 36.0 kBtu/h
(4) Total Indoor Units Capacity Correction Calculation Room1 Indoor Design Wet Bulb Temperature Correction ($68.0^{\circ} \mathrm{F}$) 1.02 (Refer to Figure 1)
Room2
Indoor Design Wet Bulb Temperature Correction $\left(66.2^{\circ} \mathrm{F}\right) \quad 0.98$ (Refer to Figure 1)

Total Indoor Units Capacity (CTi)
$\mathrm{CTi}=\Sigma$ (Indoor Unit Rating \times Indoor Design Temperature Correction)
$=15.0 \times 1.02+17.2 \times 0.98$
$=32.2 \mathrm{kBtu} / \mathrm{h}$
(5) Outdoor Unit Correction Calculation Outdoor Design Dry Bulb Temperature Correction ($98.6^{\circ} \mathrm{F}$) 0.98 (Refer to Figure 2) Piping Length Correction (250 ft) 0.93 (Refer to Figure 3) Total Outdoor Unit Capacity (CTo)

CTo	$=$ Outdoor Rating \times Outdoor Design Temperature Correction \times Piping Length Correction
	$=36.0 \times 0.98 \times 0.93$

$$
=36.0 \times 0.98 \times 0.93
$$

$$
\text { = } 32.2 \text { kBtu/h }
$$

Figure 1 Indoor unit temperature correction To be used to correct indoor unit only

Figure 2 Outdoor unit temperature correction To be used to correct outdoor unit only

Figure 3 Correction of refrigerant piping length
(6) Determination of Maximum System Capacity

Comparison of Capacity between Total Indoor Units Capacity (CTi) and Total Outdoor Unit Capacity (CTo) $\mathrm{CTi}=32.2<\mathrm{CTo}=32.8$, thus, select CTi . $\mathrm{CTx}=\mathrm{CTi}=32.2 \mathrm{kBtu} / \mathrm{h}$
(7) Comparison with Essential Load

Against the essential load 29.6 kBtu/h, the maximum system capacity is $32.2 \mathrm{kBtu} / \mathrm{h}$: Proper outdoor units have been selected.
(8) Calculation of Maximum Indoor Unit Capacity of Each Room $C T x=C T i$, thus, calculate by the calculation below
Room1
Indoor Unit Rating \times Indoor Design Temperature Correction

$$
=15.0 \times 1.02
$$

$$
=15.3 \mathrm{kBtu} / \mathrm{h}
$$

OK: fulfills the load 13.6 kBtu/h
Room2 Indoor Unit Rating \times Indoor Design Temperature Correction
$=17.2 \times 0.98$
$=16.9 \mathrm{kBtu} / \mathrm{h} \quad$ OK: fulfills the load $16.0 \mathrm{kBtu} / \mathrm{h}$
Go on to the heating trial calculation since the selected units fulfill the cooling loads of Room 1, 2.

Design Condition	
Outdoor Design Wet Bulb Temperature	$23.0^{\circ} \mathrm{F}\left(-5.0^{\circ} \mathrm{C}\right)$
Total Heating Load	$34.0 \mathrm{kBtu} / \mathrm{h}$
Room1	
Indoor Design Dry Bulb Temperature	$69.8^{\circ} \mathrm{F}\left(\mathbf{2 1 . 0 ^ { \circ } \mathrm { C })}\right.$
Heating Load	$16.3 \mathrm{kBtu} / \mathrm{h}$
Room2	$\mathbf{7 3 . 4}^{\circ} \mathrm{F}\left(\mathbf{2 3 . 0 ^ { \circ } \mathrm { C })}\right.$
Indoor Design Dry Bulb Temperature	$17.7 \mathrm{kBtu} / \mathrm{h}$
Heating Load	$\mathbf{2 3 0} \mathrm{ft}$

Rated capacity of indoor unit [kBtu/h]

Model name	Capacity class								
	06	09	12	15	18	24	30	36	
MVZ	-	-	12.0	-	18.0	27.0	34.0	40.0	
SLZ-KF	-	10.2	13.7	17.1	-	-	-	-	
SEZ-KD	-	10.9	13.6	18.0	17.2	-	-	-	
MFZ-KJ	-	10.9	13.0	18.0	21.0	-	-	-	
MLZ-KP	-	10.9	13.0	-	21.0	-	-	-	
MSZ-FH	6.0	10.9	13.6	18.0	20.3	-	-	-	
MSZ-GL	6.0	10.9	14.4	18.0	21.6	27.6	-	-	
PEAD	-	10.9	13.5	15.7	18.0	26.0	34.0	40.0	
PLA	-	-	13.5	-	18.0	26.0	34.0	40.0	

2. Heating Calculation

(1) Temporary Selection of Indoor Units

Room1
MSZ-FH15 18.0 kBtu/h (Rated)
Room2 MSZ-FH18
20.3 kBtu/h (Rated)
(2) Total Indoor Units Capacity $15+18=33$
(3) Selection of Outdoor Unit

The P36 outdoor unit is selected as total indoor units capacity is P33 MXZ-4C36 45.0 kBtu/h
(4) Total Indoor Units Capacity Correction Calculation Room1
Indoor Design Dry Bulb Temperature Correction (69.8 ${ }^{\circ} \mathrm{F}$)
1.00 (Refer to Figure 4)

Room2
Indoor Design Dry Bulb Temperature Correction (73.4 ${ }^{\circ} \mathrm{F}$)
0.92 (Refer to Figure 4)

Total Indoor Units Capacity (CTi)
$\mathrm{CTi}=\Sigma$ (Indoor Unit Rating \times Indoor Design Temperature Correction)

$$
=18.0 \times 1.00+20.3 \times 0.92
$$

$$
=36.7 \mathrm{kBtu} / \mathrm{h}
$$

(5) Outdoor Unit Correction Calculation

Outdoor Design Wet Bulb Temperature Correction (23.0${ }^{\circ} \mathrm{F}$)
Piping Length Correction (230 ft)
Defrost Correction
0.85 (Refer to Figure 5)
0.96 (Refer to Figure 6) 0.95 (Refer to Table 1)

Total Outdoor Unit Capacity (CTo)
CTo $=$ Outdoor Unit Rating \times Outdoor Design Temperature Correction \times Piping Length Correction \times Defrost Correction
$=45.0 \times 1.0 \times 0.85 \times 0.95$
$=34.9 \mathrm{kBtu} / \mathrm{h}$

Figure 4 Indoor unit temperature correction To be used to correct indoor unit only

Figure 5 Outdoor unit temperature correction To be used to correct outdoor unit only

Figure 6 Correction of refrigerant piping length

Table 1 Table of correction factor at frost and defrost

Outdoor Intake temperature <W.B. ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)>$	$43(6)$	$37(4)$	$36(2)$	$32(0)$	$28(-2)$	$25(-4)$	$21(-6)$	$18(-8)$	$14(-10)$	$5(-15)$	$-4(-20)$	$-13(-25)$
Correction factor	1.0	0.98	0.89	0.88	0.89	0.9	0.95	0.95	0.95	0.95	0.95	0.95

(6) Determination of Maximum System Capacity

Comparison of Capacity between Total Indoor Units Capacity (CTi) and Total Outdoor Unit Capacity (CTo)
$\mathrm{CTi}=36.7>\mathrm{CTo}=34.9$, thus, select CTo.
$\mathrm{CTx}=\mathrm{CTo}=34.9 \mathrm{kBtu} / \mathrm{h}$
(7) Comparison with Essential Load

Against the essential load $34.0 \mathrm{kBtu} / \mathrm{h}$, the maximum system capacity is $34.9 \mathrm{kBtu} / \mathrm{h}$: Proper outdoor units have been selected.
(8) Calculation of Maximum Indoor Unit Capacity of Each Room
$C T x=C T o$, thus, calculate by the calculation below
Room1
Maximum Capacity \times Room1 Capacity after the Temperature Correction/(Room1,2 Total Capacity after the Temperature Correction
$=34.9 \times(18.0 \times 1.00) /(18.0 \times 1.00+20.3 \times 0.92)$
$=17.1 \mathrm{kBtu} / \mathrm{h} \quad$ OK: fulfills the load $16.3 \mathrm{kBtu} / \mathrm{h}$
Room2
Maximum Capacity \times Room1 Capacity after the Temperature Correction/(Room1,2 Total Capacity after the Temperature Correction $=34.9 \times(20.3 \times 0.92) /(18.0 \times 1.00+20.3 \times 0.92)$
$=17.8 \mathrm{kBtu} / \mathrm{h} \quad$ OK: fulfills the load $17.7 \mathrm{kBtu} / \mathrm{h}$
Completed selecting units since the selected units fulfill the heating loads of Room 1, 2.
3. Power input of outdoor unit

Outdoor unit : MXZ-4C36
Indoor unit 1 : MSZ-FH15
Indoor unit 2 : MSZ-FH18
<Cooling>
(1) Rated power input of outdoor unit
(2) Calculation of the average indoor temperature power input coefficient (Cave)

Coefficient of the outdoor unit for indoor unit 1 (Outdoor temp. $98.6^{\circ} \mathrm{F}$ [37.0 $\left.{ }^{\circ} \mathrm{C}\right]$ D.B., Indoor temp. $68.0^{\circ} \mathrm{F}$ [20.0 $\left.0^{\circ} \mathrm{C}\right]$ W.B.)
1.04 (Refer to "4-2. CORRECTION BY TEMPERATURE".)

Coefficient of the outdoor unit for indoor unit 2 (Outdoor temp. $98.6^{\circ} \mathrm{F}$ [$\left.37.0^{\circ} \mathrm{C}\right]$ D.B., Indoor temp. $66.2^{\circ} \mathrm{F}$ [19.0 $\left.{ }^{\circ} \mathrm{C}\right]$ W.B.)
1.00 (Refer to " $4-2$. CORRECTION BY TEMPERATURE".)

Average indoor temp. power input coefficient $\left(C_{\text {ave }}\right)=\sum_{k=1}^{n}\left\{c_{k} \times\left(M_{k} \mid \sum_{k=1}^{n} M_{k}\right)\right\}$
n : Total number of the indoor units
k: Number of the indoor unit
c_{k} : Outdoor unit power input coefficient of k indoor unit room temp.
M_{k} : Number part of the k indoor unit capacity class

```
= 1.04 \times 15/(15 + 18) + 1.00 × 18/(15 + 18)
\(=1.02\)
```

(3) Coefficient of the partial load f (CTi)

Total Indoor units capacity
$15+18=33$, thus, $f(C T i)=0.96$ (Refer to the tables in "4-4.STANDARD CAPACITY DIAGRAM".)
(4) Outdoor power input (Plo)

Maximum System Capacity (CTx) = Total Indoor unit Capacity (CTi), so use the following formula
Plo $=$ Outdoor unit Cooling Rated Power Input \times Correction Coefficient of Indoor temperature (Cave) $\times f($ CTi)
$=2.57 \times 1.02 \times 0.96$
$=2.52 \mathrm{~kW}$
<Heating>
(1) Rated power input of outdoor unit
3.34 kW
(2) Calculation of the average indoor temperature power input coefficient

Coefficient of the outdoor unit for indoor unit 1 (Outdoor temp. $23.0^{\circ} \mathrm{F}$ [$\left.-5.0^{\circ} \mathrm{C}\right]$ W.B., Indoor temp. $69.8^{\circ} \mathrm{F}$ [21.0 $\left.{ }^{\circ} \mathrm{C}\right]$ D.B.) 1.10 (Refer to "4-2. CORRECTION BY TEMPERATURE".)

Coefficient of the outdoor unit for indoor unit 2 (Outdoor temp. 23.0F [$-5.0^{\circ} \mathrm{C}$] W.B., Indoor temp. $73.4^{\circ} \mathrm{F}$ [23.0 $\left.\left.{ }^{\circ} \mathrm{C}\right] \mathrm{D} . \mathrm{B}.\right)$
1.12 (Refer to "4-2. CORRECTION BY TEMPERATURE".)

Average indoor temp. power input coefficient $\left.\left(C_{\text {ave }}\right)=\sum_{k=1}^{n}\left\{c_{k} \times\left(M_{k}\right) \sum_{k=1}^{n} M_{k}\right)\right\}$
n : Total number of the indoor units
k: Number of the indoor unit
c_{k} : Outdoor unit power input coefficient of k indoor unit room temp.
M_{k} : Number part of the k indoor unit capacity class

$$
\begin{aligned}
& =1.10 \times 15 /(15+18)+1.12 \times 18 /(15+18) \\
& =1.11
\end{aligned}
$$

(3) No need to consider coefficient of partial load f (CTi)
(4) Outdoor power input (Plo)

Maximum System Capacity (CTx) = Total Outdoor unit Capacity (CTo), so use the following formula Plo $=$ Outdoor unit Heating Rated Power Input \times Correction Coefficient of Indoor temperature \times (Cave) $=3.34 \times 1.20 \times 1.11$
$=3.71 \mathrm{~kW}$

4-2. CORRECTION BY TEMPERATURE

The outdoor units have varied capacity at different designing temperature. Using the nominal cooling/heating capacity value and the ratio below, the capacity can be observed at various temperature.

<Cooling>

Figure 7 Indoor unit temperature correction
To be used to correct indoor unit capacity only

Figure 8 Outdoor unit temperature correction To be used to correct outdoor unit capacity only

<Heating>

Figure 9 Indoor unit temperature correction
To be used to correct indoor unit capacity only

Figure 10 Outdoor unit temperature correction
To be used to correct outdoor unit capacity only

<Heating> (NAHZ)

Figure 11 Indoor unit temperature correction To be used to correct indoor unit capacity only

Figure 12 Outdoor unit temperature correction
To be used to correct outdoor unit capacity only

4-3. STANDARD OPERATION DATA (REFERENCE DATA)

Operation				Outdoor unit model			
				MXZ-4C36NAHZ		MXZ-5C42NAHZ	
Operating conditions	Ambient temperature	Indoor	DB/WB	$80^{\circ} \mathrm{F} / 67^{\circ} \mathrm{F}$	$70^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F} / 67^{\circ} \mathrm{F}$	$70^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$
		Outdoor		$95^{\circ} \mathrm{F} / 75^{\circ} \mathrm{F}$	$47^{\circ} \mathrm{F} / 43^{\circ} \mathrm{F}$	$95^{\circ} \mathrm{F} / 75^{\circ} \mathrm{F}$	$47^{\circ} \mathrm{F} / 43^{\circ} \mathrm{F}$
	Indoor unit	No. of connected units	Unit	4		4	
		No. of units in operation		4		4	
		Model	-	09×4		$09 \times 2+12 \times 2$	
	Piping	Main pipe	$\mathrm{ft}(\mathrm{m})$	9.84 (3)		9.84 (3)	
		Branch pipe		14.76 (4.5)		14.76 (4.5)	
		Total pipe length		68.90 (21)		68.90 (21)	
	Fan speed		-	Hi		Hi	
	Amount of refrigerant		$\begin{aligned} & \mathrm{lb} \text { oz } \\ & (\mathrm{kg}) \end{aligned}$	17 lb 7 oz (7.9)		17 lb 7 oz (7.9)	
Outdoor unit	Electric current		A	14.1	18.7	17.2	19.1
	Voltage		V	230		230	
	Compressor frequency		Hz	59	74	70	80
LEV opening	Indoor unit		Pulse	112	128	129	128
Pressure	High pressure/Low pressure		MPaG	2.57/0.98	2.78/0.64	2.72/0.80	2.80/0.56
			PSIG	373/142	403/93	395/116	406/81
Temp. of each section	Outdoor unit	Discharge	$\begin{gathered} { }^{\circ} \mathrm{F} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	143.8 (62.1)	151.5 (66.4)	148.6 (64.8)	145.8 (63.2)
		Heat exchanger outlet		100.8 (38.2)	36.7 (2.6)	101.8 (38.8)	35.6 (2.0)
		Accumulator inlet		50.5 (10.3)	36.1 (2.3)	49.5 (9.7)	34.9 (1.6)
		Compressor inlet		47.1 (8.4)	34.0 (1.1)	45.3 (7.4)	32.7 (0.4)
	Indoor unit	LEV inlet		70.0 (21.1)	103.5 (39.7)	83.7 (28.7)	100.2 (37.9)
		Heat exchanger inlet		54.1 (12.3)	138.9 (59.4)	49.6 (9.8)	132.3 (55.7)

Operation				Outdoor unit model			
				MXZ-8C48NA/NAHZ		MXZ-8C60NA	
Operating conditions	Ambient	Indoor	DB/WB	$80^{\circ} \mathrm{F} / 67^{\circ} \mathrm{F}$	$70^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$	$80^{\circ} \mathrm{F} / 67^{\circ} \mathrm{F}$	$70^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$
	temperature	Outdoor		$95^{\circ} \mathrm{F} / 75^{\circ} \mathrm{F}$	$47^{\circ} \mathrm{F} / 43^{\circ} \mathrm{F}$	$95^{\circ} \mathrm{F} / 75^{\circ} \mathrm{F}$	$47^{\circ} \mathrm{F} / 43^{\circ} \mathrm{F}$
	Indoor unit	No. of connected units	Unit	4		5	
		No. of units in operation		4		5	
		Model	-	12×4		$09 \times 3+15+18$	
	Piping	Main pipe	$\mathrm{ft}(\mathrm{m})$	9.84 (3)		9.84 (3)	
		Branch pipe		14.76 (4.5)		14.76 (4.5)	
		Total pipe length		68.90 (21)		83.79 (25.5)	
	Fan speed		-	Hi		Hi	
	Amount of refrigerant		$\begin{aligned} & \mathrm{lb} \text { oz } \\ & (\mathrm{kg}) \end{aligned}$	17 lb 7 oz (7.9)		20 lb (8.9)	
Outdoor unit	Electric current		A	22.1	21.9	20.4	24.4
	Voltage		V	230		230	
	Compressor frequency		Hz	86	91	45	51
LEV opening	Indoor unit		Pulse	112	132	187	229
Pressure	High pressure/Low pressure		MPaG	2.83/0.77	2.82/0.55	2.84/0.92	2.44/0.672
			PSIG	410/112	409/80	412/134	354/97.5
Temp. of each section	Outdoor unit	Discharge	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & \left({ }^{(} \mathrm{C}\right) \end{aligned}$	157.6 (69.8)	149.2 (65.1)	167 (75.0)	133.9 (56.6)
		Heat exchanger outlet		105.6 (40.9)	34.3 (1.3)	98.8 (37.1)	51.1 (10.2)
		Accumulator inlet		47.1 (8.4)	33.4 (0.8)	49.5 (9.7)	32.4 (0.2)
		Compressor inlet		42.4 (5.8)	30.6 (-0.8)	72.5 (22.5)	31.6 (-0.2)
	Indoor unit	LEV inlet		71.1 (21.7)	98.8 (37.1)	59.7 (15.4)	81.9 (27.7)
		Heat exchanger inlet		47.5 (8.6)	134.6 (57.0)	52.5 (11.4)	104.2 (40.1)

4-4. STANDARD CAPACITY DIAGRAM

Before calculating the sum of total capacity of indoor units, please convert the value into the kW model capacity following the formula on "4-1. Method for obtaining system cooling and heating capacity".

4-4-1. MXZ-4C36NAHZ <cooling>

4-4-2. MXZ-4C36NAHZ <heating>

208, 230 V

4-4-3. MXZ-5C42NAHZ <cooling>

		MXZ
		5C42NAHZ
Nominal cooling capacity	Btu/h	42,000
Input	kW	3.13
Current $(208 \mathrm{~V})$	A	15.4
Current $(230 \mathrm{~V})$	A	14.0

4-4-4. MXZ-5C42NAHZ <heating>

		MXZ
		5C42NAHZ
Nominal heating capacity	Btu/h	48,000
Input	kW	3.43
Current (208V)	A	16.8
Current (230V)	A	15.2

4-4-5. MXZ-8C48NA MXZ-8C48NAHZ <cooling>

		MXZ
		8C48NAHZ
Nominal cooling capacity	Btu/h	48,000
Input	kW	4.00
Current $(208 \mathrm{~V})$	A	19.5
Current $(230 \mathrm{~V})$	A	17.6

4-4-6. MXZ-8C48NA MXZ-8C48NAHZ <heating>

		MXZ
		$8 \mathrm{C} 48 \mathrm{NA}(\mathrm{HZ})$
Nominal heating capacity	Btu/h	54,000
Input	kW	4.22
Current (208V)	A	20.5
Current (230V)	A	18.6

4-4-7. MXZ-8C60NA <cooling>

		MXZ
		8C60NA
Nominal cooling capacity	Btu/h	60,000
Input	kW	4.80
Current $(208 \mathrm{~V})$	A	24.1
Current $(230 \mathrm{~V})$	A	21.8

4-4-8. MXZ-8C60NA <heating>

4-5. CORRECTING CAPACITY FOR CHANGES IN THE LENGTH OF REFRIGERANT PIPING

(1) During cooling, obtain the ratio (and the equivalent piping length) of the outdoor units rated capacity and the total in-use indoor capacity, and find the capacity ratio corresponding to the standard piping length from Figure 13 to 16. Then multiply by the cooling capacity from Figure 7 and 8 in "4-2. CORRECTION BY TEMPERATURE" to obtain the actual capacity.
(2) During heating, find the equivalent piping length, and find the capacity ratio corresponding to standard piping length from Figure 17 to 18 . Then multiply by the heating capacity from Figure 9 to 12 in " $4-2$. CORRECTION BY TEMPERATURE" to obtain the actual capacity.

(1) Capacity Correction Curve

Figure 13 MXZ-4C36NAHZ <Cooling>

Figure 14 MXZ-5C42NAHZ <Cooling>

Figure 15 MXZ-8C48NA <Cooling>

Figure 16 MXZ-8C60NA <Cooling>

Figure 17 MXZ-4C36NAHZ/5C42NAHZ/8C48NA <Heating>

Figure 18 MXZ-8C60NA <Heating>

(2) Method for Obtaining the Equivalent Piping Length

Equivalent length $=($ length of piping to farthest indoor unit $)+(0.3 \times$ number of bends in the piping $)(m)$

4-5-1. Correction of Heating Capacity for Frost and Defrosting

If heating capacity has been reduced due to frost formation or defrosting, multiply the capacity by the appropriate correction factor from the following table to obtain the actual heating capacity.

Correction factor diagram

Outdoor Intake temperature <W.B. ${ }^{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right.$ >>	$43(6)$	$39(4)$	$36(2)$	$32(0)$	$28(-2)$	$25(-4)$	$21(-6)$	$18(-8)$	$14(-10)$	$5(-15)$	$-4(-20)$	$-13(-25)$
Correction factor	1.0	0.98	0.89	0.88	0.89	0.9	0.95	0.95	0.95	0.95	0.95	0.95

4-6. NOISE CRITERION CURVES

MXZ-4C36NAHZ
MXZ-4C36NAHZ-U1

MODE	SPL(dB)	LINE
COOLING	49	\multimap
HEATING	53	\bullet

MODE	SPL(dB)	LINE
COOLING	51	\circ
HEATING	54	\bullet

MXZ-8C48NAHZ-U1

MXZ-5C42NAHZ MXZ-5C42NAHZ-U1

MODE	SPL(dB)	LINE
COOLING	50	\multimap
HEATING	54	\longmapsto

MXZ-8C60NA-U1

MODE	SPL(dB)	LINE
COOLING	58	\multimap
HEATING	59	\bullet

5 OUTLINES AND DIMENSIONS

5-1. OUTDOOR UNIT

 MXZ-4C36NAHZ MXZ-5C42NAHZ MXZ-8C48NAHZ MXZ-8C48NA

MXZ-8C60NA-U1

Unit: mm <inch>

5-2. BRANCH BOX

PAC-MKA50BC

PAC-MKA51BC

SUSPENSION BOLT : W3/8(M10) REFRIGERANT PIPE FLARED CONNECTION

	Unit: inch				
	A	B	C	D	E
TO OUTDOOR UNIT					

PAC-MKA30BC

PAC-MKA31BC

SUSPENSION BOLT : W3/8(M10)
REFRIGERANT PIPE FLARED CONNECTION

	Unit: inch					
LIQUID PIPE	$1 / 4 \mathrm{~F}$	$1 / 4 \mathrm{~F}$	$1 / 4 \mathrm{~F}$			$3 / 8 \mathrm{~F}$
GAS PIPE	$3 / 8 \mathrm{~F}$	$3 / 8 \mathrm{~F}$	$3 / 8 \mathrm{~F}$			$5 / 8 \mathrm{~F}$

WIRING DIAGRAM

6－1．OUTDOOR UNIT

MXZ－4C36NAHZ MXZ－5C42NAHZ MXZ－8C48NAHZ

SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
TB1	Terminal Block＜Power Supply＞	TH6	Thermistor＜Suction Pipe〉	SW7	Switch＜Function Selection〉
TB1B	Terminal Block 〈Branch Box〉	TH7	Thermistor＜Ambient〉	SW8	Switch〈Model Selection〉
TB3	Terminal Block	TH8	Thermistor＜Heat Sink〉	SW9	Switch＜Function Selection〉
	〈Branch box／Outdoor Transmission Line）	LEV－A，LEV－B	Electronic Expansion Valve	SWU1	Switch＜Unit Address Selection，1st digit）
TB7	Terminal Block	DCL	Reactor	SWU2	Switch 〈Unit Address Selection，2nd digit）
	〈Centralized Control Transmission Line）	P．B．	Power Circuit Board	CNS1	Connector＜Branch boxiOutdoor Transmission Line）
FUSE1，FUSE2	Fuse 〈T20AL250V〉	U／V／W	Connection Terminal 〈U／V／W－Phase〉	CNS2	Connector＜Centralized Control Transmission Line）
MC	Motor For Compressor	LI	Connection Terminal 〈L－Phase〉	SS	Connector＜Base heater〉
MF1，MF2	Fan Motor	NI	Connection Terminal＜N－Phase〉	CN3D	Connector＜Connection For Option〉
21S4	Solenoid Valve＜Four－Way Valve〉	DCL1，DCL2	Connection Terminal 〈Reactor〉	CN3S	Connector＜Connection For Option〉
63H	High Pressure Switch	IGBT	Power Module	CN3N	Connector＜Connection For Option〉
63HS	High Pressure Sensor	EI，E2，E3，E4	Connection Terminal＜Ground〉	CN51	Connector＜Connection For Option〉
63LS	Low Pressure Sensor	MULTI．B．	Controller Circuit Board	LED1，LED2	LED＜Operation Inspection Display〉
SV1	Solenoid Valve〈Bypass Valve〉	SW1	Switch〈Display Selection〉	LED3	LED＜Power Supply to Main Microcomputer）
SV2	Solenoid Valve〈Switching Valve〉	SW2	Switch〈Function Selection〉	F1，F2	Fuse＜T6，3AL250V〉
BH	Base heater	SW3	Switch〈Test Run〉	X501～505	Relay
TH2	Thermistor＜Hic Pipe〉	SW4	Switch〈Model Selection〉	M－NET P．B．	M－NET Power Circuit Board
TH3	Thermistor＜Outdoor Liquid Pipe〉	SW5	Switch〈Function Selection〉	TB1	ConnectionTerminal 〈Ground〉
TH4	Thermistor＜Compressor＞	SW6	Switch〈Function Selection〉		

MXZ－8C48NA

SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
TB1	Terminal Block＜Power Supply	TH7	Thermistor＜Ambient＞	SW7	Switch 〈Function Selection〉
TB1B	Terminal Block＜Branch Box〉	TH8	Thermistor 〈Heat Sink〉	SW8	Switch〈Model Selection〉
TB3	Terminal Block〈Branch box／Outdoor Transmission Line	LEV－A，LEV－B	Electronic Expansion Valve	SW9	Switch〈Function Selection〉
		DCL	Reactor	SWU1	Switch 〈Unit Address Selection，1st digit）
TB7	Terminal Block〈Centralized Control Transmission Line〉	P．B．	Power Circuit Board	SWU2	Switch 〈Unit Address Selection，2nd digit〉
		U／V／W	Connection Terminal 〈U／V／W－Phase〉	CNS1	Connector 〈Branch box（Outdoor Transmission Line
FUSE1，FUSE2	Fuse＜T20AL250V〉	LI	Connection Terminal＜L－Phase〉	CNS2	Connector 〈Centralized Control 1 Transmission Line
MC	Motor For Compressor	NI	Connection Terminal 〈N－Phase〉	SS	Connector 〈Connection For Option〉
MF1，MF2	Fan Motor	DCL1，DCL2	Connection Terminal＜Reactor〉	CN3D	Connector 〈Connection For Option〉
2154	Solenoid Valve〈Four－Way Valve〉	IGBT	Power Module	CN3S	Connector 〈Connection For Option〉
63 H	High Pressure Switch	EI，E2，E3，E4	Connection Terminal＜Ground＞	CN3N	Connector 〈Connection For Option〉
63HS	High Pressure Sensor	MULTI．B．	Controller Circuit Board	CN51	Connector 〈Connection For Option〉
63LS	Low Pressure Sensor	SW1	Switch 〈Display Selection〉	LED1，LED2	LED 〈Operation Inspection Display〉
SV1	Solenoid Valve〈Bypass Valve〉	SW2	Switch〈Function Selection〉	LED3	LED 〈Power Supply to Main Microcomputer
TH2	Thermistor 〈Hic Pipe〉	SW3	Switch〈Test Run〉	F1，F2	Fuse〈T6，3AL250V〉
TH3	Thermistor 〈Outdoor Liquid Pipe〉	SW4	Switch＜Model Selection〉	X501～505	Relay
TH4	Thermistor＜Compressor＞	SW5	Switch 〈Function Selection〉	M－NET P．B．	M－NET Power Circuit Board
TH6	Thermistor 〈Suction Pipe〉	SW6	Switch〈Function Selection〉	TB1	ConnectionTerminal 〈Ground〉

SYMBOL	AME	SYMBOL	NAME	SYMBOL	NA
TB1	Terminal Block 〈Power Supply	TH7	Thermistor \Ambient）	SW9	Switch 〈Function Selection〉
TB1B	Terminal Block 〈Branch Box〉	TH8	Thermistor 〈Heat Sink）	SWU1	Switch 〈Unit Address Selection，ones digiti）
TB3	Terminal Block〈Branch Box／Outdoor Transmission Line）	LEV－A，LEV－B	Linear Expansion Valve	SWU2	Switch 〈Unit Address Selection，tens digit）
		DCL	Reactor	CNS1	Connector
TB7	Terminal Ble	P．B．	Power Circuit Board		〈Branch Box／Outdoor Transmission Line〉
	＜Centralized Control Transmission Line〉	UN／W	Connection Terminal 〈U／V／W－Phase〉	CNS2	Connector＜Centralized Control Transmission Line＞
FUSE1，FUSE2	Fuse（T20AL250V）	LI	Connection Terminal \L－Phase〉	SS	Connector 〈Connection For Option〉
MC	Motor For Compressor	NI	Connection Terminal（N－Phase）	CN3D	Connector 〈Connection For Option）
MF1，MF2	Fan Motor	DCL1，DCL2	Connection Terminal \Reactor）	CN3S	Connector 〈Connection For Option）
2154	Solenoid Valve Coil 〈4－Way Valve）	IGBT	Power Module	CN3	Connector 〈Connection For Option）
63H	High Pressure Switch	EI，E2，E3，E4	ConnectionTerminal \Electrical Parts Box＞	CN51	Connector 〈Connection For Option）
63HS	High Pressure Sensor	MULTI．B．	Multi Controller Circuit Board	LED1，LED2	LED＜Operation Inspection Display〉
63LS	Low Pressure Sensor	SW1	Switch 〈Display Selection）	LED3	LED（Power Supply to Main Microcomputer）
SV1	Solenoid Valve Coil 〈Bypass Valve〉	SW2	Switch 〈Function Selection〉	F1，F2	Fuse 〈T6．3AL250V）
SV2	Solenoid Valve 〈Switching Valve〉	SW3	Switch 〈Test Run）	X501～505	Relay
BH	Base Heater	SW4	Switch 〈Model Selection〉	M－NET P．B．	M－NET Power Circuit Board
TH2	Thermistor＜Hic Pipe〉	SW5	Switch 〈Function Selection〉	TB1	ConnectionTerminal \Electrical Parts Box〉
TH3	Thermistor（Outdoor Liquid Pipe）	SW6	Switch 〈Function Selection〉		
TH4	Thermistor \Compressor）	SW7	Switch 〈Function Selection〉		
TH6	Thermistor \Suction Pipe〉	SW8	Switch 〈Model Selection）		

MXZ－8C48NA－U1

SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
TB1	Terminal Block 〈Power Supply	TH8	Thermistor 〈Heat Sink〉	SW9	Switch 〈Function Selection〉
TB1B	Terminal Block 〈Branch Box＞	LEV－A，LEV－B	Linear Expansion Valve	SWU1	Switch＜Unit Address Selection，ones digit）
TB3	Terminal Block〈Branch Box／Outdoor Transmission Line〉	DCL	Reactor	SWU2	Switch＜Unit Address Selection，tens digit〉
		P．B．	Power Circuit Board	CNS1	Connector 〈Branch Box／Outdoor Transmission Line〉
TB7	Terminal Block〈Centralized Control Transmission Line〉	U／V／W	Connection Terminal＜U／V／W－Phase〉		
		LI	Connection Terminal＜L－Phase〉	CNS2	Connector（Centralized Control Transmission Line）
FUSE1，FUSE2	Fuse 〈T20AL250V）	NI	Connection Terminal＜N－Phase〉	SS	Connector 〈Connection For Option〉
MC	Motor For Compressor	DCL1，DCL2	Connection Terminal＜Reactor〉	CN3D	Connector 〈Connection For Option〉
MF1，MF2	Fan Motor	IGBT	Power Module	CN3S	Connector 〈Connection For Option〉
2154	Solenoid Valve Coil 〈4－Way Valve〉	El，E2，E3，E4	ConnectionTerminal 〈Electrical Parts Box〉	CN3N	Connector＜Connection For Option〉
63 H	High Pressure Switch	MULTI．B．	Multi Controller Circuit Board	CN51	Connector 〈Connection For Option〉
63HS	High Pressure Sensor	SW1	Switch＜Display Selection〉	LED1，LED2	LED＜Operation Inspection Display〉
63LS	Low Pressure Sensor	SW2	Switch 〈Function Selection〉	LED3	LED＜Power Supply to Main Microcomputer＞
SV1	Solenoid Valve Coil \Bypass Valve〉	SW3	Switch＜Test Run〉	F1，F2	Fuse＜T6．3AL250V》
TH2	Thermistor＜Hic Pipe〉	SW4	Switch 〈Model Selection〉	X501～505	Relay
TH3	Thermistor＜Outdoor Liquid Pipe〉	SW5	Switch 〈Function Selection〉	M－NET P．B．	M－NET Power Circuit Board
TH4	Thermistor＜Compressor＞	SW6	Switch 〈Function Selection〉	TB1	ConnectionTerminal \Electrical Parts Box〉
TH6	Thermistor 〈Suction Pipe〉	SW7	Switch 〈Function Selection〉		
TH7	Thermistor 〈Ambient〉	SW8	Switch 〈Model Selection〉		

MXZ－8C60NA－U1

SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
TB1	Terminal Block 〈Power Supply〉	TH8	Thermistor 〈Heat Sink〉	SW9	Switch〈Function Selection〉
TB1B	Terminal Block 〈Branch Box〉	LEV－A，LEV－B	Linear Expansion Valve	SWU1	Switch 〈Unit Address Selection，ones digit〉
TB3	Terminal Block	DCL	Reactor	SWU2	Switch 〈Unit Address Selection，tens digit〉
	〈Branch Box／Outdoor Transmission Line〉	P．B．	Power Circuit Board	CNS1	Connector
TB7	Terminal Block	U／V／W	Connection Terminal 〈U／V／W－Phase〉		〈Branch Box／Outdoor Transmission Line〉
	〈Centralized Control Transmission Line〉	LI	Connection Terminal＜L－Phase〉	CNS2	Connector \Centralized Control Transmission Line〉
FUSE1，FUSE2	Fuse＜T20AL250V〉	N	Connection Terminal＜N－Phase〉	SS	Connector 〈Connection For Option〉
MC	Motor For Compressor	DCL1，DCL2	Connection Terminal＜Reactor〉	CN3D	Connector 〈Connection For Option〉
MF1，MF2	Fan Motor	IGBT	Power Module	CN3S	Connector 〈Connection For Option〉
21S4	Solenoid Valve Coil＜4－Way Valve〉	El，E2，E3，E4	ConnectionTerminal \Electrical Parts Box＞	CN3N	Connector 〈Connection For Option〉
63 H	High Pressure Switch	MULTI．B．	Multi Controller Circuit Board	CN51	Connector 〈Connection For Option〉
63 HS	High Pressure Sensor	SW1	Switch 〈Display Selection〉	LED1，LED2	LED＜Operation Inspection Display〉
63LS	Low Pressure Sensor	SW2	Switch〈Function Selection〉	LED3	LED 〈Power Supply to Main Microcomputer〉
SV1	Solenoid Valve Coil＜Bypass Valve〉	SW3	Switch 〈Test Run）	F1，F2	Fuse＜T6．3AL250V》
TH2	Thermistor \langle Hic Pipe〉	SW4	Switch 〈Model Selection〉	X501～505	Relay
TH3	Thermistor＜Outdoor Liquid Pipe〉	SW5	Switch〈Function Selection〉	M－NET P．B．	M－NET Power Circuit Board
TH4	Thermistor＜Compressor）	SW6	Switch〈Function Selection〉	TB1	ConnectionTerminal＜Electrical Parts Box〉
TH6	Thermistor \Suction Pipe〉	SW7	Switch 〈Function Selection〉		
TH7	Thermistor 〈Ambient＞	SW8	Switch 〈Model Selection〉		

6-2. BRANCH BOX

PAC-MKA50BC PAC-MKA30BC

PAC-MKA51BC PAC-MKA31BC

7-1. TRANSMISSION SYSTEM SETUP

MXZ-8C48NA
MXZ-8C48NA-U1

		Capillary tube 1 (For return of oil from oil separator)	Capillary tube 2 behind LEV (in cooling mode)
Outdoor unit	MXZ-8C48NA(-U1)	$\varnothing 0.098 \times \varnothing 0.031 \times \mathrm{L}(39-1 / 2)$ $(\varnothing 2.5 \times \varnothing 0.8 \times \mathrm{L} 1000)$	-
	PAC-MKA50BC	-	$(\varnothing 0.157 \times \varnothing 0.117 \times \mathrm{L}(5-1 / 8)) \times 5$ $((\varnothing 4.0 \times \varnothing 3.0 \times \mathrm{L} 130) \times 5)$
	PAC-MKA51BC	PAC-MKA30BC	-
PAC-MKA31BC	-	$(\varnothing 0.157 \times \varnothing 0.117 \times \mathrm{L}(5-1 / 8)) \times 3$ $((\varnothing 4.0 \times \varnothing 3.0 \times \mathrm{L} 130) \times 3)$	

MXZ-8C60NA-U1

7-3. TYPICAL CONTROL SYSTEM

Longest length via outdoor units:
$\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+\mathrm{L} 5 \leqq 500 \mathrm{~m}$ (1640 ft.) ($1.25 \mathrm{~mm}^{2}$ or more) Longest transmission cable length $\mathrm{L} 1+\mathrm{L} 2, \mathrm{~L} 3+\mathrm{L} 4, \mathrm{~L} 5 \leqq 200 \mathrm{~m}$ (656 ft.) $\left(1.25 \mathrm{~mm}^{2}\right.$ or more $)$

Note: M-NET remote controller cannot be connected with a refrigerant system which includes branch box.
(1) Difference between display and operation
(1) When operating the system using the system controller, details of those operations will not appear on the display of the wireless remote controller.
(2) The set temperature range is different in the wireless remote controller that comes with room air conditioner and the system controller. The room air conditioner has a wider range. If the target temperature is set to below $63^{\circ} \mathrm{F}\left[17^{\circ} \mathrm{C}\right.$] or less, or $86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right.$] or more by the wireless remote controller that comes with room air conditioner, the temperature displayed on the system controller may be converted to their maximum/minimum set temperature. For instance, when HEAT operation at $61^{\circ} \mathrm{F}\left[16^{\circ} \mathrm{C}\right]$ is set at the room air conditioner, the system controller may display $63^{\circ} \mathrm{F}\left[17^{\circ} \mathrm{C}\right]$.
(3) When the DRY mode is set with the wireless remote controller, the room air conditioner automatically set the optimum target temperature. The system controller will display the target temperature as a set temperature.
(4) When the DRY mode is set with the system controller, the room air conditioner performs the DRY mode control operation according to the temperature set with the system controller.
(2) Timer operation
(1) Timer operation should be set using only one controller from the remote controller that comes with the room air conditioner, the system controller or the MA remote controller. If more than one controller is used to set the timer at the same time, the timer will not function properly.
(2) When the timer is set with the wireless remote controller; the system controller will not show the timer display.
(3) The timer set with the system controller will not be cancelled with the wireless remote controller.
(3) Manual operation prohibition
(1) When the manual operation (ON/OFF, set temperature, or operation mode) is prohibited with the system controller, the command to perform the prohibited operation will not be accepted from the wireless remote controller that comes with the room air conditioner. The operation partially enabled by the system controller can be operated with the wireless remote controller. Regardless of whether the operation is disabled or enabled, 3 short beeps will sound when the signal is sent from the wireless remote controller.

(4) Trouble

(1) If the MA remote controller or the system controller shows the abnormal indication, clear it by stopping the operation with one of the following: the MA remote controller, the system controller, or the wireless remote controller.
(Abnormal indication of the air conditioner could be recovered automatically, but that of the MA remote controller or the system controller cannot be recovered unless the operation is stopped.)

(5) Group setting

(1) MA group or M-NET group setting cannot be set.

(6) Restricted functions

The following functions of system controller cannot be used.

- DIDO controller (Interlock with the air conditioner)
- Fan control of energy saving control or peak cut control function
- Air conditioning charge [TG-2000A]
- Set temperature range limiting function
- Operation mode changeover limit (season changing) [PAC-SF44SRA]
- Dual set point function
- Setback mode
- Hold function

8
 TROUBLESHOOTING

8-1. TROUBLESHOOTING

<Check code displayed by self-diagnosis and actions to be taken for service (summary)>

Present and past check codes are logged, and they can be displayed on the wired remote controller and multi controller circuit board of outdoor unit. Actions to be taken for service, which depends on whether or not the trouble is reoccurring in the field, are summarized in the table below. Check the contents below before investigating details.

Unit conditions at service	Check code	Actions to be taken for service (summary)
The trouble is reoccurring.	Displayed	Judge the problem and take a corrective action according to "8-3. SELF-DIAGNOSIS ACTION BY FLOWCHART".
	Not displayed	Conduct troubleshooting and ascertain the cause of the trouble according to " $8-4$. TROUBLESHOOTING BY INFERIOR PHENOMENA".
The trouble is not reoccurring.	Logged	(1)Consider the temporary defects such as the work of protection devices in the refrigerant circuit including compressor, poor connection of wiring, noise, etc. Re-check the symptom, and check the installation environment, refrigerant amount, weather when the trouble occurred, matters related to wiring, etc. (2Reset check code logs and restart the unit after finishing service. (3)There is no abnormality in electrical component, controller board, remote controller, etc.
	Not logged	(1)Re-check the abnormal symptom. (2Conduct troubleshooting and ascertain the cause of the trouble according to "8-4. TROUBLESHOOTING BY INFERIOR PHENOMENA". (3)Continue to operate unit for the time being if the cause is not ascertained. (4)There is no abnormality concerning of parts such as electrical component, controller board, remote controller, etc.

8-2. CHECK POINTS FOR TEST RUN

8-2-1. Procedures before test run

(1) Before a test run, make sure that the following work is completed.

- Installation related:

Make sure that the panel of cassette type and electrical wiring are done.
Otherwise electrical functions like auto vane will not operate normally.

- Piping related :

Perform leakage test of refrigerant and drain piping.
Make sure that all joints are perfectly insulated.
Check stop valves on both liquid and gas side for full open.

- Electrical wiring related : Check ground wire, transmission cable, remote controller cable, and power supply cable for secure connection. Make sure that all switch settings of address or adjustments for special specification systems are correctly settled.
(2) Safety check :

With the insulation tester of 500 V , inspect the insulation resistance.
Do not touch the transmission cable and remote controller cable with the tester.
The resistance should be over $1.0 \mathrm{M} \Omega$. Do not proceed inspection if the resistance is less than $1.0 \mathrm{M} \Omega$. Inspect between the outdoor unit power supply terminal block and ground first, metallic parts like refrigerant pipes or the electrical box next, then inspect all electrical wiring of outdoor unit, indoor unit, and all linked equipment.
(3) Before operation:

Turn the power supply switch of the outdoor unit to on for compressor protection. For a test run, wait at least 12 hours from this point.
(4) More than 12 hours later from power supply to the outdoor unit, turn all power switch to on for the test run. Perform test run according to the "Operation procedure" table of the bottom of this page. While test running, make test run reports .

8-2-2. Test run

(1) Using remote controller

Refer to the indoor unit installation manual.

- Be sure to perform the test run individually for each indoor unit. Make sure each indoor unit operates properly following the installation manual attached to the unit.
If you perform the test run for indoor units connected all at once, faulty connections of the refrigerant pipes and cables cannot be detected.
- The compressor operation is not available for 3 minutes at least after the power is supplied.
- The compressor can emit noise just after turn on the power supply or in case of low outside air temperature.

About the restart protective mechanism

Once the compressor stops, the restart preventive device operates so the compressor will not operate for 3 minutes to protect the air conditioner.
(2) Using SW3 in outdoor unit

In case of the test run from outdoor unit, all indoor units operate. Therefore, you cannot detect any erroneous connection of refrigerant pipes and the connecting wires. If it aims at detection of any erroneous connection, be sure to carry out the test run from remote controller with reference to "(1) Using remote controller."

- Setting procedure

The setting of test run (ON/OFF) and its operation mode (cooling/heating) can be set by SW3 on the multi controller circuit board of outdoor unit.
(1) Set operation mode (cooling or heating) by SW3-2.
(2) Start test run by setting SW3-1 to ON ($丁$) with the indicated operation mode of SW3-2.
(3) Finish test run by setting SW3-1 to OFF (ป) .

- Operation mode cannot be changed by SW3-2 during test run.
- To change the test run operation mode, stop the test run by 3-1, and restart test run by SW3-1 after the mode is changed by SW3-2.
- Test run automatically stops 2 hours later by 2 -hour OFF timer function.
- Test run can be performed by the remote controller.
- The remote controller display of test run by outdoor unit is the same as that of test run by remote controller.
- If test run is set with the outdoor unit, the test run is performed for all indoor units.
- The remote controller operation becomes unavailable once the test run is set with the outdoor unit.

SW3-1	ON	Cooling operation
SW3-2	OFF	
SW3-1	ON	Heating operation
SW3-2	ON	

Note: After performing the test run, set SW3-1 to OFF.

- A few seconds after the compressor starts, a clanging noise may be heard from the inside of the outdoor unit. The noise is coming from the service port due to the small difference in pressure in the pipes. The unit is not faulty.

When test run is started by "Using SW3 in outdoor unit", even if stop instructions are sent by remote controller, outdoor unit will not stop.
In this case, please set SW3 in outdoor unit to off to end test run.

- After power is supplied or after an operation stops for a while, a small clicking noise may be heard from the inside of the branch box. This is the sound of linear expansion valve's opening and closing and this is not a fault.

Note: Be sure to wait at least 3 minutes after turning on the power supply before setting SW3-1 and SW3-2.
If the DIP switches are set before 3 minutes has elapsed, the test run may not start.

8-2-3. Countermeasures for Error During Test Run

- If a problem occurs during test run, a code number will appear on the remote controller (or LED on the outdoor unit), and the air conditioning system will automatically cease operating.
Determine the nature of the abnormality and apply corrective measures.

$\begin{array}{\|c\|} \hline \text { Check } \\ \text { code } \\ (2 \text { digits }) \end{array}$	$\begin{gathered} \text { Check } \\ \text { code } \\ \text { (4 digits) } \end{gathered}$	Trouble	Detected Unit			Remarks
			Indoor	Outdoor	Remote Controller	
Ed	0403	Serial communication error		\bigcirc		Outdoor unit Multi controller board-Power board communication trouble
U2	1102	Compressor temperature trouble		\bigcirc		Check delay code 1202
UE	1302	High pressure trouble		\bigcirc		Check delay code 1402
U7	1500	Superheat due to low discharge temperature trouble		\bigcirc		Check delay code 1600
U2	1501	Refrigerant shortage trouble		\bigcirc		Check delay code 1601
		Closed valve in cooling mode		\bigcirc		Check delay code 1501
P6	1503	Freeze protection of Branch box or Indoor unit	\bigcirc			
EF	1508	4-way valve trouble in heating mode		\bigcirc		Check delay code 1608
UF	4100	Compressor current interruption (locked compressor)		\bigcirc		Check delay code 4350
UP	4210	Compressor overcurrent interruption		\bigcirc		
U9	4220	Voltage shortage/overvoltage/PAM error/L1open phase/primary current sensor error/power synchronization signal error		\bigcirc		Check delay code 4320
U5	4230	Heat sink temperature trouble		\bigcirc		Check delay code 4330
U6	4250	Power module trouble		\bigcirc		Check delay code 4350
U8	4400	Fan trouble (Outdoor)		\bigcirc		Check delay code 4500
U3	5101	Compressor temperature thermistor (TH4) open / short		\bigcirc		
U4	5102	Suction pipe temperature thermistor (TH6) open / short		\bigcirc		
U4	5105	Outdoor liquid pipe temperature thermistor (TH3) open/short		\bigcirc		Check delay code 1205
U4	5106	Ambient temperature thermistor (TH7) open/short		\bigcirc		Check delay code 1221
U4	5109	HIC pipe temperature thermistor (TH2) open/short		\bigcirc		Check delay code 1222
U4	5110	Heat sink temperature thermistor (TH8) open/short		\bigcirc		Check delay code 1214
F5	5201	High pressure sensor (63HS) trouble		\bigcirc		Check delay code 1402
F3	5202	Low pressure sensor (63LS) trouble		\bigcirc		Check delay code 1400
UH	5300	Current sensor trouble/Primary current error		\bigcirc		Check delay code 4310
A0	6600	Duplex address error	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A2	6602	Transmission processor hardware error	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A3	6603	Transmission bus BUSY error	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A6	6606	Signal communication error with transmission processor	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A7	6607	No ACK error	\bigcirc		\bigcirc	Only M-NET Remote controller is detected.
A8	6608	No response frame error	\bigcirc		\bigcirc	Only M-NET Remote controller is detected.
E0/E4	6831	MA communication receive error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
E3/E5	6832	MA communication send error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
E3/E5	6833	MA communication send error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
E0/E4	6834	MA communication receive error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
EF	7100	Total capacity error		\bigcirc		
EF	7101	Capacity code error	\bigcirc	\bigcirc		
EF	7102	Connecting excessive number of units and branch boxes		\bigcirc		
EF	7105	Address setting error		\bigcirc		
EF	7130	Incompatible unit combination		\bigcirc		

NOTES:

1. When the outdoor unit detects No ACK error/No response error, an object indoor unit is treated as a stop, and not assumed to be abnormal.
2. The check codes displayed on the units may be different between the error source and others. In that case, please refer to the check code of error source by displayed attribute and address.
3. Refer to the service manual of indoor unit or remote controller for the detail of error detected in indoor unit or remote controller.

- Self-diagnosis function

The indoor and outdoor units can be diagnosed automatically using the self-diagnosis switch (SW1) and LED indication (LED1, LED2) found on the outdoor multi controller circuit board. LED indication : Set all contacts of SW1 to OFF.

- During normal operation

The LED indicates the drive state of the controller in the outdoor unit.

Bit	1	2	3	4	5	6	7	8
Indication	Compressor operated	52 C	21 S 4	SV1	SV2 *	-	-	Always lit

[Example]
When the compressor and
SV1 are on during cooling
operation.

8-3. SELF-DIAGNOSIS ACTION BY FLOWCHART

Check code
0403
(Ed)

Serial communication error

Abnormal points and detection methods	Causes and checkpoints
If serial communication between the outdoor controller board and outdoor power board is defective.	(1) Wire breakage or contact failure of connector CN2 or CN4
	(2) Malfunction of power board communication circuit on outdoor controller board
(3) Malfunction of communication circuit on outdoor power board	

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor temperature trouble

Abnormal points and detection methods

(1) If TH4 falls into following temperature conditions;
-exceeds $230^{\circ} \mathrm{F}\left[110^{\circ} \mathrm{C}\right]$ continuously for 5 minutes
-exceeds $257^{\circ} \mathrm{F}$ [$125^{\circ} \mathrm{C}$]
(2) If a pressure detected by the high pressure sensor and converted to saturation temperature exceeds $104^{\circ} \mathrm{F}\left[40^{\circ} \mathrm{C}\right]$ during defrosting, and TH 4 exceeds $230^{\circ} \mathrm{F}\left[110^{\circ} \mathrm{C}\right]$.

TH4: Thermistor <Compressor>
LEV: Electronic expansion valve

Causes and checkpoints

(1) Malfunction of stop valve
(2) Over-heated compressor operation caused by shortage of refrigerant
(3) Defective thermistor
(4) Defective outdoor controller board
(5) LEV performance failure
(6) Defective indoor controller board
(7) Clogged refrigerant system caused by foreign object
(8) Refrigerant shortage while in heating operation (Refrigerant liquid accumulation in compressor while indoor unit is OFF/thermo-OFF.)
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor temperature trouble

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

High pressure trouble

Abnormal points and detection methods

Causes and checkpoints

(1) High pressure abnormality (63 H operation)

Abnormal if 63H operates(*) during compressor operation. (*602 PSIG [4.15 MPaG])
(2) High pressure abnormality (63HS detected)

1. If a pressure detected by 63 HS exceeds 625 PSIG
[4.31 MPaG] or more during compressor operation.
2. If a pressure detected by 63 HS exceeds 600 PSIG [4.14 MPaG] or more for 3 minutes during compressor operation.

63H : High pressure switch
63HS: High pressure sensor
LEV : Electronic expansion valve
SV1 : Solenoid valve
TH7 : Thermistor <Ambient>
(1) Defective operation of stop valve (not fully open)
(2) Clogged or broken pipe
(3) Malfunction or locked outdoor fan motor
(4) Short-cycle of outdoor unit
(5) Dirt of outdoor heat exchanger
(6) Remote controller transmitting error caused by noise interference
(7) Contact failure of the outdoor controller board connector
(8) Defective outdoor controller board
(9) Short-cycle of indoor unit
(10) Decreased airflow, clogged filter, or dirt on indoor unit.
(11) Malfunction or locked indoor fan motor
(12) Decreased airflow caused by defective inspection of outdoor temperature thermistor (It detects lower temperature than actual temperature.)
(13) Indoor LEV performance failure
(14) Malfunction of fan driving circuit
(15) SV1 performance failure
(16) Defective high pressure sensor
(17) Defective high pressure sensor input circuit on outdoor controller board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

High pressure trouble

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

High pressure trouble

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

High pressure trouble

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Abnormal points and detection methods

If the discharge superheat is continuously detected $\left.-27^{\circ} \mathrm{F}\left[-15^{\circ} \mathrm{C}\right]^{*}\right)$ or less for 5 minutes even though the indoor LEV has minimum open pulse after the compressor starts operating for 10 minutes.

LEV : Linear expansion valve
TH4 : Thermistor <Compressor>
63HS: High pressure sensor
*At this temperature, conditions for the abnormality detection will not be satisfied if no abnormality is detected on either TH4 or 63HS.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Superheat due to low discharge temperature trouble

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Refrigerant shortage trouble

Abnormal points and detection methods
 Causes and checkpoints

(1) When all of the following conditions are satisfied for 15 consecutive minutes:

1. The compressor is operating in HEAT mode.
2. Discharge super heat is $144^{\circ} \mathrm{F}\left[80^{\circ} \mathrm{C}\right]$ or more.
3. Difference between TH7 and the TH3 applies to the formula of (TH7-TH3 < $9^{\circ} \mathrm{F}\left[5^{\circ} \mathrm{C}\right]$).
4. The saturation temperature converted from a high pressure sensor detects below $95^{\circ} \mathrm{F}\left[35^{\circ} \mathrm{C}\right]$.
(2) When all of the following conditions are satisfied:
1.The compressor is in operation.
2.When cooling, discharge superheat is $144^{\circ} \mathrm{F}\left[80^{\circ} \mathrm{C}\right]$ or more, and the saturation temperature converted from a high pressure sensor is over $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$.
5. When heating, discharge superheat is $162^{\circ} \mathrm{F}$ [$90^{\circ} \mathrm{C}$] or more.
(1) Defective operation of stop valve (not fully open)
(2) Defective thermistor
(3) Defective outdoor controller board
(4) Indoor LEV performance failure
(5) Gas leakage or shortage
(6) Defective 63HS

TH3 : Thermistor <Outdoor liquid pipe>
TH7 : Thermistor <Ambient>
LEV : Electronic expansion valve
63HS : High pressure sensor

- Diagnosis of defects

Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Refrigerant shortage trouble

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Closed valve in cooling mode

Abnormal points and detection methods

Causes and checkpoints

If stop valve is closed during cooling operation.

When both of the following temperature conditions are satisfied for 20 minutes or more during cooling operation.

1. TH22j - TH21j $\geqq-3.6^{\circ} \mathrm{F}\left[-2^{\circ} \mathrm{C}\right]$
2. TH23j $-\mathrm{TH} 21 \mathrm{j} \geqq-3.6^{\circ} \mathrm{F}\left[-2^{\circ} \mathrm{C}\right]$

Note:

For indoor unit, the abnormality is detected if an operating unit satisfies the condition.
(1) Outdoor liquid/gas valve is closed.
(2) Mulfunction of outdoor LEV (LEV-A) (blockage)

TH21: Indoor intake temperature thermistor (RT 11 or TH 1) TH22: Indoor liquid pipe temperature thermistor (RT13 or TH2) TH23: Branch box gas pipe temperature thermistor (TH-A to E) LEV: Electronic expansion valve
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Freeze protection of Branch box or Indoor unit

Abnormal points and detection methods

The purpose of the check code is to prevent indoor unit from freezing or dew condensation which is caused when a refrigerant keeps flowing into the unit in STOP.

When all of the following conditions are satisfied:

1. The compressor is operating in COOL mode.
2. 15 minutes have passed after the startup of the compressor, or the change in the number of operating indoor units is made (including a change by turning thermo-ON/OFF).
3. After the condition 2 above is satisfied, the thermistor of indoor unit in STOP detects $\mathrm{TH} 22 \mathrm{j} \leqq 23^{\circ} \mathrm{F}\left[-5^{\circ} \mathrm{C}\right]$ for 5 consecutive minutes.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

4-way valve trouble in heating mode

Abnormal points and detection methods

If 4-way valve does not operate during heating operation.

When any of the following temperature conditions is satisfied for 3 minutes or more during heating operation

1. TH22j $-\mathrm{TH} 21 \mathrm{j} \leqq-18^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C}\right]$
2. TH23j $-\mathrm{TH} 21 \mathrm{j} \leqq-18^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C}\right]$
3. $\mathrm{TH} 22 \mathrm{j} \leqq 37.4^{\circ} \mathrm{F}\left[3^{\circ} \mathrm{C}\right]$
4. $\mathrm{TH} 23 \mathrm{j} \leqq 37.4^{\circ} \mathrm{F}\left[3^{\circ} \mathrm{C}\right]$

Note:
For indoor unit, the abnormality is detected if an operating unit satisfies the condition.

Causes and checkpoints

(1)4-way valve failure
(2) Disconnection or failure of 4-way valve coil
(3) Clogged drain pipe
(4) Disconnection or loose connection of connectors
(5) Malfunction of input circuit on outdoor multi controller circuit board
(6) Defective outdoor power circuit board

TH21: Indoor intake temperature thermistor (RT11 or TH1) TH22: Indoor liquid pipe temperature thermistor (RT13 or TH2) TH23: Branch box gas pipe temperature thermistor (TH-A to E)
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor current interruption (Locked compressor)

Abnormal points and detection methods

If overcurrent of DC bus or compressor is detected within 30 seconds since the compressor starts operating.

Causes and checkpoints

(1) Closed stop valve
(2) Decrease of power supply voltage
(3) Looseness, disconnection, or wrong phase of compressor wiring connection
(4) Model selection error on indoor controller board or outdoor multi controller circuit board
(5) Defective compressor
(6) Defective outdoor power circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor current interruption (Locked compressor)

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor overcurrent interruption

Abnormal points and detection methods

Causes and checkpoints

If overcurrent of DC or the compressor is detected after 30 seconds since the compressor starts operating.
(1) Closed outdoor stop valve
(2) Decrease of power supply voltage
(3) Looseness, disconnection or reverse phase of compressor wiring connection
(4) Malfunction of indoor/outdoor fan
(5) Short-cycle of indoor/outdoor unit
(6) Model selection error upon replacement of outdoor multi controller circuit board
(7) Malfunction of input circuit on outdoor multi controller circuit board
(8) Defective compressor
(9) Defective outdoor power circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor overcurrent interruption

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Voltage shortage /Overvoltage/PAM error/L1 open phase/ Primary current sensor error/Power synchronization signal error

Abnormal points and detection methods

Causes and checkpoints

If any of following symptoms are detected;

- Decrease of DC bus voltage to 200 V
- Increase of DC bus voltage to 400 V
-DC bus voltage stays at 310 V or less for consecutive 30 seconds when the operational frequency is over 20 Hz .
-When any of following conditions is satisfied while the detections value of primary current is 0.1 A or less.

1. The operational frequency is 40 Hz or more.
2. The compressor current is 6A or more.
(1) Decrease/increase of power supply voltage
(2) Primary current sensor failure
(3) Disconnection of compressor wiring
(4) Malfunction of 52 C
(5) Disconnection or contact failure of CN52C
(6) Defective outdoor power circuit board
(7) Malfunction of 52C driving circuit on outdoor multi controller circuit board
(8) Disconnection of CN5
(9) Disconnection of CN2
(10) Malfunction of primary current detecting circuit on outdoor power circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($\mathbf{\square}$) indicates a switch position.

Voltage shortage /Overvoltage/PAM error/L1 open phase/ Primary current sensor error/Power synchronization signal error

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($\mathbf{\square}$) indicates a switch position.

Heat sink temperature trouble

Abnormal points and detection methods

Causes and checkpoints

If TH8 detects a temperature outside the specified range during compressor operation.

TH8: Thermistor <Heat sink>
(1) Blocked outdoor fan
(2) Malfunction of outdoor fan motor
(3) Blocked airflow path
(4) Rise of ambient temperature
(5) Characteristic defect of thermistor
(6) Malfunction of input circuit on outdoor power board
(7) Malfunction of outdoor fan driving circuit
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Power module trouble or overcurrent trouble

Abnormal points and detection methods

Causes and checkpoints

If both of the following conditions are satisfied:

1. Overcurrent of DC bus or compressor is detected during compressor operation.
2. Inverter power module is determined to be defected.
(1) Short-circuit caused by looseness or disconnection of compressor wiring
(2) Defective compressor
(3) Defective outdoor power circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Abnormal points and detection methods
 Causes and checkpoints

If no rotational frequency is detected, or detected a value outside the specified range during fan motor operation.
(1) Malfunction of fan motor
(2) Disconnection of CNF connector
(3) Defective outdoor multi controller circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Note: Set SW7-1 OFF after the troubleshooting completes.

Compressor temperature thermistor (TH4) open/short

<Detected in outdoor unit>

Abnormal points and detection methods

Causes and checkpoints

If TH4 is detected to be open/short.
(The open/short detection is disabled for 10 minutes after compressor starts, during defrosting operation, or for 10 minutes after returning from the defrosting operation.)
Open: $37.4^{\circ} \mathrm{F}\left[3^{\circ} \mathrm{C}\right]$ or less
Short: $422.6^{\circ} \mathrm{F}\left[217^{\circ} \mathrm{C}\right]$ or more
TH4: Thermistor <Compressor>
(1) Disconnection or contact failure of connectors
(2) Characteristic defect of thermistor
(3) Defective outdoor multi controller circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting
any connectors, or replacing boards.
The black square (■) indicates a switch position.

Suction pipe temperature thermistor (TH6) open/short

<Detected in outdoor unit>

Abnormal points and detection methods

Causes and checkpoints

If TH6 is detected to be open/short.
(The open/short detection is disabled during 10 seconds to 10 minutes. after compressor starts, during defrosting operation, or for 10 minutes after returning from the defrosting operation.)
Open: $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ or less
Short: $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more TH6: Thermistor <Suction pipe>
(1) Disconnection or contact failure of connectors
(2) Characteristic defect of thermistor
(3) Defective outdoor multi controller circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting
any connectors, or replacing boards.
The black square (\quad) indicates a switch position.

Outdoor liquid pipe temperature thermistor (TH3) open/short

Abnormal points and detection methods

Causes and checkpoints

If TH3 is detected to be open/short.
(The open/short detection is disabled during 10 seconds to 10 minutes. after compressor starts, during defrosting operation, or for 10 minutes after returning from the defrosting operation.)
Open: $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ or less
Short: $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more TH3: Thermistor <Outdoor liquid pipe>
(1) Disconnection or contact failure of connectors
(2) Characteristic defect of thermistor
(3) Defective outdoor multi controller circuit board

-Diagnosis of defects

Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square (\quad) indicates a switch position.

Ambient temperature thermistor (TH7) open/short

Abnormal points and detection methods	Causes and checkpoints
If TH7 is detected to be open/short Open: $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ or less Short: $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more TH7: Thermistor <Ambient>	(1) Disconnection or contact failure of connectors (2) Characteristic defect of thermistor (3) Defective outdoor multi controller circuit board

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($\mathbf{\square}$) indicates a switch position.

Abnormal points and detection methods \quad Causes and checkpoints

If TH 2 is detected to be open/short.
Open: $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ or less
Short: $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more
TH2: Thermistor <HIC pipe>
(1) Disconnection or contact failure of connectors
(2) Characteristic defect of thermistor
(3) Defective outdoor multi controller circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting
any connectors, or replacing boards.
The black square ($\mathbf{\square}$) indicates a switch position.

Heat sink temperature thermistor (TH8) open/short

Abnormal points and detection methods	Causes and checkpoints
If TH8 is detected to be open/short.	(1) Disconnection or contact failure of connectors
Open: $-31.2^{\circ} \mathrm{F}\left[-35.1^{\circ} \mathrm{C}\right]$ or less	(2) Characteristic defect of thermistor
Short: $338.5^{\circ} \mathrm{F}\left[170.3^{\circ} \mathrm{C}\right]$ or more	(3) Defective outdoor multi controller circuit board
TH8: Thermistor <Heat sink>	

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting
any connectors, or replacing boards.
The black square (■) indicates a switch position.

Abnormal points and detection methods

(1) When the detected pressure in the high pressure sensor is 14.2 PSIG [1 kgf/cm ${ }^{2}$] or less during operation, the compressor stops operation and enters into an anti-restart mode for 3 minutes.
(2) When the detected pressure is 14.2 PSIG [$1 \mathrm{kgf} / \mathrm{cm}^{2}$] or less immediately before restarting, the compressor falls into an abnormal stop with a check code <5201>.
(3) For 3 minutes after compressor restarting, during defrosting operation, and for 3 minutes after returning from defrosting operation, above mentioned symptoms are not determined as abnormal.

Causes and checkpoints

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($■$) indicates a switch position.

Low pressure sensor (63LS) trouble

Abnormal points and detection methods

Causes and checkpoints

(1) When the detected pressure in the low pressure sensor is -32.7 PSIG [-2.3kgf/cm²] or less, or 328.6 PSIG [$23.1 \mathrm{kgf} / \mathrm{cm}^{2}$] or more during operation, the compressor stops operation with a check code <5202>.
(2) For 3 minutes after compressor restarting, during defrosting operation, and for 3 minutes after returning from defrosting operation, above mentioned symptoms are not determined as abnormal.
(1) Defective low pressure sensor
(2) Decrease of internal pressure caused by gas leakage
(3) Disconnection or contact failure of connector
(4) Malfunction of input circuit on outdoor multi controller circuit board
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square (■) indicates a switch position.

Current sensor trouble/Primary current error

Causes and checkpoints

If any of the following conditions is detected:
(1) Primary current sensor detects any of the following conditions (single phase unit only):

10 consecutive- second detection	One-time detection
34 A	38 A

(2) Secondary current sensor detects 25 A or more.
(3) Secondary current sensor detects 1.0 A or less.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($\mathbf{\square}$) indicates a switch position.

Duplex address error

Abnormal points and detection methods
 Causes and checkpoints

If 2 or more units with the same address are existing.
\qquad
(1) There are 2 units or more with the same address in their controller among outdoor unit, indoor unit, Fresh Master, Lossnay or remote controller (2) Noise interference on indoor/outdoor connectors
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Transmission processor hardware error

Abnormal points and detection methods

If the transmission line shows "1" although the transmission processor transmitted "0".

Causes and checkpoints

(1) A transmitting data collision occurred because of a wiring work or polarity change has performed while the power is ON on either of the indoor/outdoor unit, Fresh Master or Lossnay
(2) Malfunction of transmitting circuit on transmission processor
(3) Noise interference on indoor/outdoor connectors
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Transmission bus BUSY error

Abnormal points and detection methods

Causes and checkpoints

(1) An abnormality when no transmission status caused by transmitting data collision continues for 8 to 10 minutes.
(2) An abnormality when data cannot be output on the transmission line consecutively because of noise etc. for 8 to 10 minutes.
(1) The transmission processor is unable to transmit due to a short-cycle voltage such as noise is mixed on the transmission line.
(2) The transmission processor is unable to transmit due to an increase of transmission data amount caused by a miswiring of the terminal block (transmission line) (TB3) and the terminal block (centralized control line) (TB7) on the outdoor unit.
(3) The share on transmission line becomes high due to a mixed transmission caused by a malfunction of repeater on the outdoor unit, which is a function to connect/disconnect transmission from/to control system and centralized control system.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Signal communication error with transmission processor

Abnormal points and detection methods
 Causes and checkpoints

(1) If the data of unit/transmission processor were not normally transmitted.	(1) Accidental disturbance such as noise or lightning
surge	
(2) the address transmission from the unit processor was not normally	
transmitted.	(2) Hardware malfunction of transmission processor

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Abnormal points and detection methods

Causes and checkpoints

(1) Represents a common error detection

An abnormality detected by the sending side controller when receiving no ACK from the receiving side, though signal was once sent. The sending side searches the error in 30 seconds interval for 6 times continuously.
(2) The cause of displayed address and attribute is on the outdoor unit side An abnormality detected by the indoor unit if receiving no ACK when transmitting signal from the indoor unit to the outdoor unit.
(3) The cause of displayed address and attribute is on the indoor unit side An abnormality detected by the remote controller if receiving no ACK when sending data from the remote controller to the indoor unit.

(4) The cause of the displayed address and attribute is on the remote controller side
An abnormality detected by the indoor unit if receiving no ACK when transmitting signal from the indoor unit to the remote controller.
(1) The previous address unit does not exist since the address switch was changed while in electric continuity status.
(2) Decline of transmission voltage/signal caused by tolerance over on transmission line -At the furthest end: 656 ft [200 m]

- On remote controller line: 39 ft [12 m]
(3) Decline of transmission voltage/ signal due to unmatched transmission line types -Types for shield line: CVVS, CPEVS -Line diameter: AWG16 [1.25 mm²] or more
(4) Decline of transmission voltage/ signal due to excessive number of connected units
(5) Malfunction due to accidental disturbance such as noise or lightning surge
(6) Defect of error source controller
(1) Contact failure of indoor/outdoor unit transmission line
(2) Disconnection of transmission connector (CN2M) on indoor unit
(3) Malfunction of sending/receiving circuit on indoor/ outdoor unit
(1) While operating with multi refrigerant system indoor units, an abnormality is detected when the indoor unit transmit signal to the remote controller during the other refrigerant-system outdoor unit is turned OFF, or within 2 minutes after it turned back ON.
(2) Contact failure of indoor unit or remote controller transmission line
(3) Disconnection of transmission connector (CN2M) on indoor unit
(4) Malfunction of sending/receiving circuit on indoor unit or remote controller
(1)While operating with multi refrigerant system indoor units, an abnormality is detected when the indoor unit transmit signal to the remote controller during the other refrigerant-system outdoor unit is turned OFF, or within 2 minutes after it turned back ON.
(2) Contact failure of indoor unit or remote controller transmission line
(3) Disconnection of transmission connector (CN2M) on indoor unit
(4) Malfunction of sending/receiving circuit on indoor unit or remote controller

Abnormal points and detection methods

(5) The cause of displayed address and attribute is on the Fresh Master side
An abnormality detected by the indoor unit if receiving no ACK when transmitting signal from the indoor unit to the Fresh Master.

The cause of displayed address and attribute is on Lossnay side An abnormality detected by the indoor unit if receiving no ACK when the indoor unit transmit signal to the Lossnay.

(7)The controller of displayed address and attribute is not recognized.
(1) While the indoor unit is operating with multi refrigerant system Fresh Master, an abnormality is detected when the indoor unit transmits signal to the remote controller while the outdoor unit with the same refrigerant system as the Fresh Master is turned OFF, or within 2 minutes after it turned back ON.
(2) Contact failure of indoor unit or Fresh Master transmission line
(3) Disconnection of transmission connector (CN2M) on indoor unit or Fresh Master
(4) Malfunction of sending/receiving circuit on indoor unit or Fresh Master
(1) An abnormality is detected when the indoor unit transmits signal to Lossnay while the Lossnay is turned OFF.
(2) While the indoor unit is operating with the other refrigerant Lossnay, an abnormality is detected when the indoor unit transmits signal to the Lossnay while the outdoor unit with the same refrigerant system as the Lossnay is turned OFF, or within 2 minutes after it turned back ON.
(3) Contact failure of indoor unit or Lossnay transmission line
(4) Disconnection of transmission connector (CN2M) on indoor unit
(5) Malfunction of sending/receiving circuit on indoor unit or Lossnay
(1) The previous address unit does not exist since the address switch was changed while in electric continuity status.
(2) An abnormality detected at transmitting from the indoor unit since the Fresh Master/Lossnay address are changed after synchronized setting of Fresh Master/Lossnay by the remote controller.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

No response frame error

Abnormal points and detection methods

Causes and checkpoints

If receiving no response command while already received ACK.
The sending side searches the error in 30 seconds interval for 6 times continuously.
(1) Continuous failure of transmission due to noise etc
(2) Decline of transmission voltage/signal caused by tolerance over on transmission line
-At the furthest end: 656 ft [200 m]

- On remote controller line: 39 ft [12 m]
(3) Decline of transmission voltage/ signal due to unmatched transmission line types
-Types for shield line: CVVS, CPEVS
-Line diameter: AWG16 [1.25 mm²] or more
(4) Accidental malfunction of error source controller
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Abnormal points and detection methods

Causes and checkpoints

Detected in remote controller or indoor unit:
(1) When the main or sub remote controller cannot receive signal from indoor unit which has the " 0 " address.
(2) When the sub remote controller cannot receive signal.
(3) When the indoor controller board cannot receive signal from remote controller or another indoor unit.
(4) When the indoor controller board cannot receive signal.
(1) Contact failure of remote controller wirings
(2) Irregular Wiring
(A wiring length, number of connecting remote controllers or indoor units, or a wiring thickness does not meet the conditions specified in the chapter
"Electrical Work" in the indoor unit Installation Manual.)
(3) Malfunction of the remote controller sending/ receiving circuit on indoor unit with the LED2 is blinking.
(4) Malfunction of the remote controller sending/ receiving circuit
(5) Remote controller transmitting error caused by noise interference
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

MA communication receive error

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Abnormal points and detection methods	Causes and checkpoints
Detected in remote controller or indoor unit.	(1) There are 2 remote controllers set as main. (2) Malfunction of remote controller sending/receiving circuit (3) Malfunction of sending/receiving circuit on indoor controller board (4) Remote controller transmitting error caused by noise interference

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

MA communication send error

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Total capacity error

Abnormal points and detection methods

Causes and checkpoints

When the total of the number on connected indoor unit model names exceeds the specified capacity level (130% of the number on the outdoor unit model name), a check code $<7100>$ is displayed.
(1) The total of number on connected indoor unit model names exceeds the specified capacity level:

- 36: up to code 29
-42: up to code 35
- 48: up to code 40
-60: up to code 59
(2) The model name code of the outdoor unit is registered wrongly.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Capacity code error

Abnormal points and detection methods \quad Causes and checkpoints

When the capacity of connected indoor unit is over, a check code <7101> is displayed.

The model name of connected indoor unit (model code) is read as incompatible.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Connecting excessive number of units and branch boxes

Abnormal points and detection methods

When the connected indoor units or branch boxes exceed the limit, a check code <7102> is displayed.

Causes and checkpoints

Connecting more indoor units and branch boxes than the limit.
Abnormal if connecting status does not comply with the following limit;
(1) Outdoor unit's capacity class is:
-36: up to 4 indoor units
42: up to 5 indoor units
48: up to 8 indoor units
60: up to 8 indoor units
(2) Connect at least 1 indoor unit (Abnormal if connected none)
(3) Connectable up to 2 branch boxes
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Address setting error

Abnormal points and detection methods	Causes and checkpoints
The address setting of outdoor unit or branch box is wrong.	Wrongly set address of branch box The outdoor unit is not set in 000 , or in the range of 51 to 100.

-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Incompatible unit combination

Abnormal points and detection methods \quad Causes and checkpoints

When the connected indoor unit is not compatible with the outdoor unit, the outdoor unit detects the error at startup.
-Diagnosis of defects
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

8-4. TROUBLESHOOTING BY INFERIOR PHENOMENA

Phenomena	Factors	Countermeasures
1. Remote controller display works normally and the unit performs cooling operation, however, the capacity cannot be fully obtained. (The air does not cool well.)	(1) Refrigerant shortage (2) Filter clogging (3) Heat exchanger clogging (4) Air duct short cycle	(1) If refrigerant leaks, discharging temperature rises and LEV opening increases. Inspect leakage by checking the temperature and opening. Check pipe connections for gas leakage. (2) Open intake grille and check the filter. Clean the filter by removing dirt or dust on it. (3) If the filter is clogged, indoor pipe temperature rises and discharging pressure increases. Check if heat exchanger is clogged by inspecting discharging pressure. Clean the heat exchanger. (4) Remove the blockage.
2. Remote controller display works normally and the unit performs heating operation, however, the capacity cannot be fully obtained.	(1) Linear expansion valve fault Opening cannot be adjusted well due to linear expansion valve fault. (2) Refrigerant shortage (3) Lack of insulation for refrigerant piping (4) Filter clogging (5) Heat exchanger clogging (6) Air duct short cycle (7) Bypass circuit of outdoor unit fault	(1) Discharging temperature and indoor heat exchanger temperature does not rise. Inspect the failure by checking discharging pressure. Replace linear expansion valve. (2) If refrigerant leaks, discharging temperature rises and LEV opening increases. Inspect leakage by checking the temperature and opening. Check pipe connections for gas leakage. (3) Check the insulation. (4) Open intake grille and check the filter. Clean the filter by removing dirt or dust on it. (5) If the filter is clogged, indoor pipe temperature rises and discharging pressure increases. Check if heat exchanger is clogged by inspecting discharging pressure. Clean the heat exchanger. (6) Remove the blockage. (7) Check refrigerant system during operation.
3.(1) For 3 minutes after temperature adjuster turns off, the compressor will not start operating even if temperature adjuster is turned on. (2) For 3 minutes after temperature adjuster turns on, the compressor will not stop operating even if temperature adjuster is turned off. (Compressor stops operating immediately when turning off by the remote controller.)	(1) (2) Normal operation (For protection of compressor)	(1) (2) Normal operation
4. The compressor that is running soon after powered on is slow to speed up.	The rate of speed-up is kept at $2 \mathrm{~Hz} /$ minute during 4 hours after powered on. This can prevent a compressor failure that occurs when a non-energized compressor speeds up rapidly with refrigerant collected in the compressor.	Normal operation

8-5. OUTDOOR UNIT INPUT/OUTPUT CONNECTOR

- State (CN51)

(A) Distant control board (E) Lamp power supply
(B) Relay circuit
© External output adapter (PAC-SA88HA-E)
(D) Outdoor unit control board

L1: Error display lamp
L2: Compressor operation lamp
X, Y: Relay (Coil standard of 0.9W or less for 12 V DC)
X, Y: Relay (1mA DC)

- Auto change over (CN3N)

(A) Remote control panel
(B) Relay circuit
© External input adapter (PAC-SC36NA-E) (D) Outdoor unit control board

	ON	OFF
SW1	Heating	Cooling
SW2	Validity of SW1	Invalidity of SW1

- Silent Mode / Demand Control (CN3D)

(A) Remote control panel
(B) Relay circuit
© External input adapter (PAC-SC36NA-E)
(D) Outdoor unit control board

The silent mode and the demand control are selected by switching the DIP switch 9-2 on outdoor controller board. It is possible to set it to the following power consumption (compared with ratings) by setting SW1, 2.

	Outdoor controller board DIP SW9-2	SW1	SW2	Function
Silent mode	OFF	ON	-	Silent mode operation
Demand control	ON	OFF	OFF	100% (Normal)
		ON	OFF	75%
		ON	ON	50%
		OFF	ON	0% (Stop)

8-6. HOW TO CHECK THE PARTS

OUTDOOR UNIT:
MXZ-4C36NAHZ
MXZ-5C42NAHZ
MXZ-8C48NAHZ
MXZ-8C48NA
MXZ-5C42NAHZ-U1

MXZ-8C48NAHZ-U1

Check method of DC fan motor (fan motor/outdoor multi controller circuit board)

(1) Notes

1. High voltage is applied to the connecter (CNF1, 2) for the fan motor. Pay attention to the service.
2. Do not pull out the connector (CNF1, 2) for the motor with the power supply on.
(It causes trouble of the outdoor multi controller circuit board and fan motor.)
(2) Self check

Symptom: The outdoor fan cannot rotate.

Power supply check(Remove the connector (CNF1, 2))
Measure the voltage in the outdoor multi controller circuit board.
TEST POINT (1) : Voc (between $1(+)$ and $4(-)$ of the fan connector): $V_{\text {oc }} 290-330 \mathrm{VDC}$ (When PAM stops), 350 VDC (When PAM is operating) TEST POINT (2) : Vcc (between $5(+)$ and $4(-)$ of the fan connector): $\mathrm{V}_{\mathrm{cc}} 15 \mathrm{~V}$ DC

- The inverter control P.C. board is built in the fan motor of this outdoor unit.
- When F500 that is on multi controller board is blown, change the fan motor and multi controller board at the same time (F500 is impossible to change).
For outdoor unit, there are 2 fan motors (up and down; MF1/MF2), it is possible to connect to either CNF1 or CNF2 on the board.
It is abnormal when the abnormality is detected from either both or only one motor.

Check method of multi controller circuit board

Check method of power circuit board

Check method of M-NET power circuit board

8-7. HOW TO CHECK THE COMPONENTS
 <Thermistor characteristic Graph>

Low temperature thermistors

- Thermistor <HIC pipe> (TH2)
- Thermistor <Outdoor liquid pipe> (TH3)
- Thermistor <Suction pipe> (TH6)
- Thermistor <Ambient> (TH7)

Thermistor $\mathrm{RO}=15 \mathrm{k} \Omega \pm 3 \%$
B constant $=3480 \pm 2 \%$

$\mathrm{Rt}=15 \exp \left\{3480\left(\frac{1}{273+\mathrm{t}}-\frac{1}{273}\right)\right\}$			
$32^{\circ} \mathrm{F}\left[0^{\circ} \mathrm{C}\right]$	$15 \mathrm{k} \Omega$	$86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$	$4.3 \mathrm{k} \Omega$
$50^{\circ} \mathrm{F}\left[10^{\circ} \mathrm{C}\right]$	$9.6 \mathrm{k} \Omega$	$104^{\circ} \mathrm{F}\left[40^{\circ} \mathrm{C}\right]$	$3.0 \mathrm{k} \Omega$
$68^{\circ} \mathrm{F}\left[20^{\circ} \mathrm{C}\right]$	$6.3 \mathrm{k} \Omega$		
$77^{\circ} \mathrm{F}\left[25^{\circ} \mathrm{C}\right]$	$5.2 \mathrm{k} \Omega$		

Medium temperature thermistor

- Thermistor <Heat sink> (TH8)

Thermistor R50 $=17 \mathrm{k} \Omega \pm 2 \%$
B constant $=4150 \pm 3 \%$
$R_{t}=17 \exp \left\{4150\left(\frac{1}{273+t}-\frac{1}{323}\right)\right\}$

$32^{\circ} \mathrm{F}\left[0^{\circ} \mathrm{C}\right]$	$180 \mathrm{k} \Omega$
$77^{\circ} \mathrm{F}\left[25^{\circ} \mathrm{C}\right]$	$50 \mathrm{k} \Omega$
$122^{\circ} \mathrm{F}\left[50^{\circ} \mathrm{C}\right]$	$17 \mathrm{k} \Omega$
$158^{\circ} \mathrm{F}\left[70^{\circ} \mathrm{C}\right]$	$8 \mathrm{k} \Omega$
$194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$	$4 \mathrm{k} \Omega$

High temperature thermistor

- Thermistor <Compressor> (TH4)

Thermistor R120 $=7.465 \mathrm{k} \Omega \pm 2 \%$
B constant $=4057 \pm 2 \%$
$R_{t}=7.465 \exp \left\{4057\left(\frac{1}{273+t}-\frac{1}{393}\right)\right\}$

$68^{\circ} \mathrm{F}\left[20^{\circ} \mathrm{C}\right]$	$250 \mathrm{k} \Omega$	$158^{\circ} \mathrm{F}\left[70^{\circ} \mathrm{C}\right]$	$34 \mathrm{k} \Omega$
$86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$	$160 \mathrm{k} \Omega$	$176^{\circ} \mathrm{F}\left[80^{\circ} \mathrm{C}\right]$	$24 \mathrm{k} \Omega$
$104^{\circ} \mathrm{F}\left[40^{\circ} \mathrm{C}\right]$	$104 \mathrm{k} \Omega$	$194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$	$17.5 \mathrm{k} \Omega$
$122^{\circ} \mathrm{F}\left[50^{\circ} \mathrm{C}\right]$	$70 \mathrm{k} \Omega$	$212^{\circ} \mathrm{F}\left[100^{\circ} \mathrm{C}\right]$	$13.0 \mathrm{k} \Omega$
$140^{\circ} \mathrm{F}\left[60^{\circ} \mathrm{C}\right]$	$48 \mathrm{k} \Omega$	$230^{\circ} \mathrm{F}\left[110^{\circ} \mathrm{C}\right]$	$9.8 \mathrm{k} \Omega$

<HIGH PRESSURE SENSOR>

- Comparing the High Pressure Sensor Measurement and Gauge Pressure

By configuring the digital display setting switch (SW1) as shown in the figure below, the pressure as measured by the high pressure sensor appears on the LED1, 2 on the control board.

(1) While the outdoor unit is stopped, compare the gauge pressure and the pressure displayed on self-diagnosis LED1, 2.

1) When the gauge pressure is between 0 and 14 PSIG [0.098 MPaG], internal pressure is caused due to gas leak.
2) When the pressure displayed on self-diagnosis LED1, 2 is between 14 PSIG [0.098 MPaG], the connector may be defective or be disconnected. Check the connector and go to (4).
3) When the pressure displayed on self-diagnosis LED1, 2 exceeds 725 PSIG [5.0 MPaG], go to (3).
4) If other than 1), 2) or 3), compare the pressures while the sensor is running. Go to (2).
(2) Compare the gauge pressure and the pressure displayed on self-diagnosis LED1,2 after 15 minutes have passed since the start of operation. (Compare them by PSIG [MPaG] unit.)
5) When the difference between both pressures is within 36 PSIG [0.25 MPaG], both the high pressure sensor and the control board are normal.
6) When the difference between both pressures exceeds 36 PSIG [0.25 MPaG], the high pressure sensor has a problem. (performance deterioration)
7) When the pressure displayed on self-diagnosis LED1, 2 does not change, the high pressure sensor has a problem.
(3) Remove the high pressure sensor from the control board to check the pressure on the self-diagnosis LED1, 2.
8) When the pressure displayed on self-diagnosis LED1, 2 is between 0 and 14 PSIG [0.098 MPaG], the high pressure sensor has a problem.
9) When the pressure displayed on self-diagnosis LED1, 2 is approximately 725 PSIG [5.0 MPaG], the control board has a problem.
(4) Remove the high pressure sensor from the control board, and short-circuit between the pin 2 and pin 3 connectors (63 HS) to check the pressure with self-diagnosis LED1, 2.
10) When the pressure displayed on the self-diagnosis LED1, 2 exceeds 725 PSIG [5.0 MPaG], the high pressure sensor has a problem.
11) If other than 1), the control board has a problem.

- High Pressure Sensor Configuration (63HS)

The high pressure sensor consists of the circuit shown in the figure below. If $5 \mathrm{~V} D \mathrm{D}$ is applied between the red and the black wires, voltage corresponding to the pressure between the white and the black wires will be output, and the value of this voltage will be converted by the microcomputer. The output voltage is 0.078 V per 14 PSIG [0.098 MPaG].
Note:
The pressure sensor on the body side is designed to connect to the connector. The connector pin number on the body side is different from that on the control board side.

	Body side	Control board side
Vcc	Pin 1	Pin 3
Vout	Pin 2	Pin 2
GND	Pin 3	Pin 1

<LOW PRESSURE SENSOR>

- Comparing the Low Pressure Sensor Measurement and Gauge Pressure

By configuring the digital display setting switch (SW1) as shown in the figure below, the pressure as measured by the low pressure sensor appears on the LED1 on the control board.

The figure at left shows that the switches 1 through 4 are set to ON and 5 through 8 are set to OFF.
(1) While the outdoor unit is stopped, compare the gauge pressure and the pressure displayed on self-diagnosis LED1, 2.

1) When the gauge pressure is between 0 and 14 PSIG [0.098 MPaG], internal pressure is caused due to gas leak.
2) When the pressure displayed on self-diagnosis LED1, 2 is between 0 and 14 PSIG [0.098 MPaG], the connector may be defective or be disconnected. Check the connector and go to (4).
3) When the outdoor temperature is $86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$ or less, and the pressure displayed on self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], go to (3).
When the outdoor temperature exceeds $86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$, and the pressure displayed on self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], go to (5).
4) If other than 1), 2) or 3), compare the pressures while the sensor is running. Go to (2).
(2) Compare the gauge pressure and the pressure displayed on self-diagnosis LED1, 2 after 15 minutes have passed since the start of operation. (Compare them by PSIG [MPaG] unit.)
5) When the difference between both pressures is within 29 PSIG [0.2 MPaG], both the low pressure sensor and the control board are normal.
6) When the difference between both pressures exceeds 29 PSIG [0.2 MPaG], the low pressure sensor has a problem. (performance deterioration)
7) When the pressure displayed on the self-diagnosis LED1, 2 does not change, the low pressure sensor has a problem.
(3) Remove the low pressure sensor from the control board to check the pressure with the self-diagnosis LED1, 2 display.
8) When the pressure displayed on the self-diagnosis LED1,2 is between 0 and 14 PSIG [0.098 MPaG], the low pressure sensor has a problem.
9) When the pressure displayed on self-diagnosis LED1, 2 is approximately 247 PSIG [1.7 MPaG], the control board has a problem.
(4) Remove the low pressure sensor from the control board, and short-circuit between the pin 2 and pin 3 connectors (63LS) to check the pressure with the self-diagnosis LED1, 2.
10) When the pressure displayed on the self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], the low pressure sensor has a problem.
11) If other than 1), the control board has a problem.
(5) Remove the high pressure sensor (63 HS) from the control board, and insert it into the connector for the low pressure sensor (63LS) to check the pressure with the self-diagnosis LED1, 2.
12) When the pressure displayed on the self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], the control board has a problem.
13) If other than 1), go to (2).

- Low Pressure Sensor Configuration (63LS)

The low pressure sensor consists of the circuit shown in the figure below. If 5 V DC is applied between the red and the black wires, voltage corresponding to the pressure between the white and the black wires will be output, and the value of this voltage will be converted by the microcomputer. The output voltage is 0.173 V per 14 PSIG [0.098 MPaG].
Note:
The pressure sensor on the body side is designed to connect to the connector. The connector pin number on the body side is different from that on the control board side.

	Body side	Control board side
Vcc	Pin 1	Pin 3
Vout	Pin 2	Pin 2
GND	Pin 3	Pin 1

BRANCH BOX: PAC-MKA50BC PAC-MKA51BC PAC-MKA30BC PAC-MKA31BC

Linear expansion valve (LEV) in Branch box

(1) Operation summary of the linear expansion valve

- Linear expansion valve open/close through stepping motor after receiving the pulse signal from the branch box controller board.
- Valve position can be changed in proportion to the number of pulse signal.
<Connection between the branch box controller board and the linear expansion valve>

<Output pulse signal and the valve operation>

Output (Phase)	Output							
	1	2	3	4	5	6	7	8
$ø 1$	ON	ON	OFF	OFF	OFF	OFF	OFF	ON
$ø 2$	OFF	ON	ON	ON	OFF	OFF	OFF	OFF
$\varnothing 3$	OFF	OFF	OFF	ON	ON	ON	OFF	OFF
$\varnothing 4$	OFF	OFF	OFF	OFF	OFF	ON	ON	ON

The output pulse shifts in below order.
Opening a valve : $8 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 8$
Closing a valve : $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 1$

- When linear expansion valve operation stops, all output phases become OFF.

(2) Linear expansion valve operation

(3) How to attach and detach the coil of linear expansion valve

<Composition>
Linear expansion valve is separable into the main body and the coil as shown in the diagram below.

<How to detach the coil>

Hold the lower part of the main body (shown as A) firmly so that the main body does not move and detach the coil by pulling it upward.
Be sure to detach the coil holding main body firmly. Otherwise pipes can bend due to stress.

<How to attach the coil>

Hold the lower part of the main body (shown as A) firmly so that the main body does not move and attach the coil by inserting it downward into the main body. Then securely attach the coil stopper to pipe B. (At this time, be careful that stress is not added to lead wire and main body is not wound by lead wire.) If the stopper is not firmly attached to pipe B, coil may be detached from the main body and that can cause defective operation of linear expansion valve.
To prevent piping stress, be sure to attach the coil holding the main body of linear expansion valve firmly. Otherwise pipe may break.

Be sure to attach the stopper to pipe B.

Troubleshooting

Problems	Checkpoint	Corrective measures
Locked expansion valve	If the linear expansion valve becomes locked and the motor is still operating, the motor will emit a clicking noise and will not function. This clicking noise indicates an abnormality.	Replace the linear expansion valve.
Short circuit or broken circuit in expansion valve motor coil	Use an all-purpose electrical meter to measure the resistance between the different coils (red-white, red-orange, brown-yellow, brown-blue). Normal resistance is within a range of $46 \Omega \pm 4 \%$.	Replace the linear expansion valve.
Valve does not close completely.	In order to check the linear expansion valve, operate 1 indoor unit in the fan mode and another in the cooling mode. Then, use the outdoor multi controller board to operate the monitor and check the pipe temperature of the indoor unit. The linear expansion valve should be fully closed when the fan is operating. The temperature measured by the temperature sensor will drop if there is any leakage. If the measured temperature is significantly lower than that on the remote controller, this indicates that the valve is not closed. It is not necessary to replace the linear expansion valve if the leak of refrigerant is small and does not cause a malfunction.	Replace the linear expansion valve if there is a major leak of refrigerant.
Incorrect connection or connection failure	(1) Check improperly connected connector terminals and the wire colors. (2) Remove the connector on the controller board side and check electrical conductance.	Continuity check of wrong part

8-8. TEST POINT DIAGRAM

Outdoor multi controller circuit board

MXZ-4C36NAHZ	MXZ-5C42NAHZ	MXZ-8C48NAHZ	MXZ-8C48NA
MXZ-4C36NAHZ-U1	MXZ-5C42NAHZ-U1	MXZ-8C48NAHZ-U1	MXZ-8C48NA-U1
MXZ-8C60NA-U1			<CAUTION> TEST POINT © is high voltage.

<CAUTION> TEST POINT (1) is high voltage.

Outdoor power circuit board MXZ-4C36NAHZ
MXZ-5C42NAHZ
MXZ-8C48NAHZ
MXZ-8C48NA
MXZ-4C36NAHZ-U1
MXZ-5C42NAHZ-U1
MXZ-8C48NAHZ-U1
MXZ-8C48NA-U1
MXZ-8C60NA-U1

Brief Check of POWER MODULE
If they are short-circuited, it means that they are broken.
Measure the resistance in the following points (connectors, etc.).

1. Check of POWER MODULE
(1) Check of DIODE circuit
$\mathrm{R}-\mathrm{L} 1, \mathrm{~S}-\mathrm{L} 1, \mathrm{R}-\mathrm{N} 1, \mathrm{~S}-\mathrm{N} 1$
(2) Check of IGBT circuit

L2 - N1
(3) Check of INVERTER circuit
$P-U, P-V, P-W, N 1-U, N 1-V, N 1-W$
Note: The marks $\mathrm{R}, \mathrm{S}, \mathrm{L} 1, \mathrm{~L} 2, \mathrm{P}, \mathrm{N} 1, \mathrm{U}, \mathrm{V}$ and W shown in the diagram are not actually printed on the board.

M-NET power circuit board
MXZ-4C36NAHZ
CN2
Connect to the outdoor multi
CN2
Connect to the outdoor multi controller circuit board (CN102) (1)-(2): 24-30 V DC
(3)-(4): $24-30 \vee D C$

MXZ-8C48NAHZ
MXZ-8C48NA
MXZ-4C36NAHZ-U1
MXZ-5C42NAHZ-U1
MXZ-8C48NAHZ-U1
MXZ-8C48NA-U1
MXZ-8C60NA-U1

Branch box controller board
PAC-MKA50BC PAC-MKA51BC
PAC-MKA30BC PAC-MKA31BC

TH-A to E
Connect to thermistor-A to E
TH-D and E for PAC-MKA50/51BC only

LEV-A to E
Connect to LEV-A to E
LEV-D and E for PAC-MKA50/51BC only

CN3M
Connected to the terminal block (TB5) (M-NET transmission connecting wire) 24-30 V DC (non polar)
LED1,LED2

- Startup Main power supply (208/230 V AC) - Normal operating LED1:Main power supply LED2:Blink depend on the total number of indoor units.
<Example>
The total number is 2 ,
(1)Blink 2 times
(2)Turn OFF for 3 seconds
(3)Repeat (1)-(2)

SW4
Mode selection
SW12
Address setting tens DIGIT
SW11
Address setting ones DIGIT
SW5
Service setting

SW1
Indoor unit connection

8-9. INTERNAL SWITCH FUNCTION TABLE
(1) Function of switches

MXZ-4C36NAHZ(-U1) MXZ-5C42NAHZ(-U1)
MXZ-8C60NA-U1
MXZ-8C48NAHZ(-U1) MXZ-8C48NA(-U1)

[^2]| Switch | Step | Function | Operation in Each Switch Setting | | | Remarks | Purpose | Additional Information |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ON | OFF | When to Set | | | |
| SW7
 Function switch | 1 | Ignore current sensor abnormality and rotational frequency abnormality of outdoor fan motor | Enable | Normal | After turning the power ON. | <lnitial settings>$\begin{aligned} & \text { MXZ-4C36/5C42/ } \\ & \text { 8C48NAHZ } \end{aligned}$ | To perform a test run for electrical parts alone without running the compressor. Also, to perform the troubleshooting of electrical parts without operating the outdoor unit's fan. | Make sure to connect the connectors to the compressor after checking the electrical parts. Be careful not to get electrical shock while working on electrical parts. |
| | 2 | Setting to energize the freeze stat heater (optional part) | During heating operation only*3 | Include when the heating operation is OFF.*4 | Can be set when OFF or during operation | | It reduces snow on the base, even it blows inside the unit, by setting the base heater ON while the HEAT operation is stopped. | Power consumption raises while the operation is stopped. |
| | 3 | - | - | - | - | | - | - |
| | 4 | Maximum frequency down at 1 hour after COOL operation | Enable | Normal | Can be set when OFF or during operation | $\text { OFF } 123456$ | To reduce dew condensation on the indoor unit by lowering the frequency. | The performance might be insufficient. |
| | 5 | - | - | - | - | | - | - |
| | 6 | Manual defrost | Manual defrost | Normal | During compressor running in HEAT mode. | | Turn ON when it is necessary to perform the defrosting operation forcedly. (Effective only at startup, or 10 minutes after the last defrosting operation) | It performs the defrosting operation forcedly.
 (HEAT operation is stopped temporarily.) |
| SW9
 Function Switch | 1 | Auto change over from remote controller (IC with the minimum address) | Enable | Disable | Before turning the power ON | <Initial settings> | Enables the indoor unit with the minimum address to select AUTO mode, and switches the operation mode of the other indoor units to the same mode. | Cannot be set when the centralized control is ON. |
| | 2 | Switching the Silent/ Demand mode | Demand control | Silent mode | Can be set when OFF or during operation | | - | About the Silent mode/Demand control setting, refer to "8-5. OUTDOOR UNIT INPUT/OUTPUT CONNECTOR". |
| | 3 | - | - | - | - | | - | - |
| | 4 | - | - | - | - | | - | - |

[^3]PAC-MKA50BC PAC-MKA51BC PAC-MKA30BC PAC-MKA31BC
The black square (\square) indicates a switch position.

Switch	Step	Function				Operation in Each Switch Setting			Remarks	Additional Information
						ON	OFF	When to Set		
SWU11 Ones digit address setting SW12 Tens digit address setting		How to set addresses Example: if address is " 3 ", remain SW12 (for over 10) at " 0 ", and match SW11 (for 1 to 9) with "3".						Before turning the power ON	<lnitial settings>	-
SW1 Indoor unit connection	1-5	sw1	1 2 3 3 $4^{* 1}$ $5^{* 1}$ 6		Not Not Not Not Not Not	OFF connected connected connected connected	ON Connected Connected Connected Connected Connected	Before turning the power ON	<Initial settings> $\mathrm{ON}_{\mathrm{OFF}}^{\mathrm{OF}}+123456$	After each indoor unit is connected to the outdoor unit, turn ON the switch corresponding to each indoor unit. For example, when the indoor units are connected to INDOOR UNIT-A and C, turn SW1-1 and SW1-3 to ON.
SW4 Mode selection	1			-		-	-	-	<Initial settings>	
	2	Power-s	ply vol	Itage setting		230 V	208 V	Set at factory only		
	3	Change commu	peration ation e	if M-NET rror occurs.		Stop operation	Continued operation	Before turning the power ON		-
	4	Automatic restoration when the power comes back ON.*2				Inactive	Active			
	5-10	-				-	-	-	-	-
SW5 Service setting	1-3	Change INDOOR UNIT No. for monitoring				Refer to "8-11. BRANCH BOX UNIT OPERATION MONITOR FUNCTION".		Cen be activated at any time	<Initial settings> $\begin{aligned} & \text { ON } \\ & \text { OFF } \\ & 123456 \\ & \hline \end{aligned}$	-

8-10. OUTDOOR UNIT FUNCTIONS

No.	SW1 setting	Display mode	Display on the LED1, 2 (display data)								Notes
	12345678		1	2	3	4	5	6	7	8	
128	00000001	Actual frequency of abnormality delay	0-255 (Hz)								Display of actual frequency at time of abnormality delay
129	10110001	Fan step number at time of abnormality delay	0-15								Display of fan step number at time of abnormality delay
131	11000001	IC1 LEV opening pulse abnormality delay	0-2000 (pulse)								Delay of opening pulse of indoor LEV at time of abnormality delay
132	00100001	IC2 LEV opening pulse abnormality delay									
133	10100001	IC3 LEV opening pulse abnormality delay									
134	01100001	IC4 LEV opening pulse abnormality delay									
135	11100001	IC5 LEV opening pulse abnormality delay									
136	00010001	High pressure sensor data at time of abnormality delay	-99.9-999.9 (PSIG)								Display of data from High pressure sensor, all thermistors, and SC/SH at time of abnormality delay
137	10010001	TH4 (Compressor) sensor data at time of abnormality delay	-99.9-999.9 (${ }^{\circ} \mathrm{F}$)								
138	01010001	TH6 (Suction pipe) sensor data at time of abnormality delay									
139	11010001	TH3 (Outdoor liquid pipe) sensor data at time of abnormality delay									
140	00110001	TH8 (Heat sink) sensor data at time of abnormality delay									
141	10110001	$\begin{array}{\|l\|} \hline \text { OC SC (cooling) at time of } \\ \text { abnormality delay } \end{array}$	-99.9-999.9 (degree) During heating: subcool (SC) During cooling; superheat (SH) (Fixed to "0" during cooling operation)								
142	01110001	IC1 SC/SH at time of abnormality delay									
143	11110001	IC2 SCISH at time of abnormality delay									
144	00001001	IC3 SCISH at time of abnormality delay									
145	10001001	IC4 SCISH at time of abnormality delay									
146	01001001	IC5 SC/SH at time of abnormality delay									
147	11001001	IC9 SCISH at time of abnormality delay									
148	00100001	IC10 SC/SH at time of abnormality delay									
149	10101001	IC11 SC/SH at time of abnormality delay									
150	01101001	IC12 SC/SH at time of abnormality delay									

No.	SW1 setting	Display mode	Display on the LED1, 2 (display data)								Notes
	12345678		1	2	3	4	5	6	7	8	
192	00000011	Actual frequency of abnormality	0-255 (Hz)								Display of actual frequency at time of abnormality
193	10000011	Fan step number at time of abnormality	0-15								Display of fan step number at time of abnormality
195	11000011	IC1 LEV opening pulse at time of abnormality	0-2000 (pulse)								Display of opening pulse of indoor LEV at time of abnormality
196	00100011	IC2 LEV opening pulse at time of abnormality									
197	10100011	IC3 LEV opening pulse at time of abnormality									
198	01100011	IC4 LEV opening pulse at time of abnormality									
199	11100011	IC5 LEV opening pulse at time of abnormality									
200	00010011	High pressure sensor data at time of abnormality	-99.9-999.9 (PSIG)								Display of data from High pressure sensor, and all thermistors, at time of abnormality.
201	10010011	TH4 (Compressor) sensor data at time of abnormality	-99.9-999.9 (${ }^{\circ} \mathrm{F}$)								
202	01010011	TH6 (Suction pipe) sensor data at time of abnormality									
203	11010011	TH3 (Outdoor liquid pipe) sensor data at time of abnormality									
204	00110011	TH8 (Heat sink) sensor data at time of abnormality									
205	10110011	OC SC (cooling) at time of abnormaity	-99.9-999.9 (degree)								Display of outdoor SC data at time of abnormality
206	01110011	IC1 SC/SH at time of abnormality	$\begin{aligned} & -99.9-999.9 \text { (degree) } \\ & \text { During heating: subcool (SC) } \\ & \text { During cooling; superheat (SH) (Fixed to "0" during cooling operation) } \end{aligned}$								Display of indoor SC/SH data at time of abnormality
207	11110011	IC2 SC/SH at time of abnormality									
208	00001011	IC3 SC/SH at time of abnormality									
209	10001011	IC4 SC/SH at time of abnormality									
210	01001011	IC5 SC/SH at time of abnormality									
211	11001011	IC6 Capacity code	0-255								Display of indoor unit capacity code The No. 1 unit will start from the M-NET address with the lowest number
212	00101011	IC7 Capacity code									
213	10101011	IC8 Capacity code									
214	01101011	IC6 operation mode	STOP	Fan	Cooling thermo-ON	Cooling thermo-OFF	Heating thermo-ON	Heating thermo-OFF			Display of indoor unit operation mode
215	11101011	IC7 operation mode									
216	00011011	IC8 operation mode									

8-11. BRANCH BOX UNIT OPERATION MONITOR FUNCTION

[When optional part 'A-Control Service Tool (PAC-SK52ST)' is connected to branch box controller board (CNM)] Digital indicator LED1 displays 2 digit number or code to inform operation condition and the meaning of check code by controlling DIP SW2 on 'A-Control Service Tool'.
<Table1> SW5 setting The black square ($\boldsymbol{\bullet}$) indicates a switch position.

Operation indicator:

- SW2 - Use to set the displayed item
- SW5 - Use to set the displayed unit
<Table2> Functions
The black square ($■$) indicates a switch position.

SW2 setting	SW5 setting*1	Display detail	Explanation for display	Unit
	Common	Status of branch box	During startup $\square_{\square}^{0.5 \mathrm{~s}} \quad \rightarrow-\square$ During error detection Displays a check code, and M-NET address of the unit which the check code was detected. Example: If the check code 2520 is detected in the address3, $\begin{array}{lll} 0.5 \mathrm{~s} & 0.5 \mathrm{~s} & 0.5 \mathrm{~s} \\ 03 & \rightarrow 25 & 2.0 \mathrm{~s} \\ 4 \end{array}$ During no power supply F8 Other Displays the number of units in operation. 0 to 5	
	Individual unit	Status of branch box	During startup During error detection Displays a check code, and M-NET address of the selected unit. During no power supply F8 Other Displays an operation mode of the selected unit. 0: Stop C: Cool/Dry H: Heat d: Defrost	-

[^4]The black square (■) indicates a switch position.

SW2 setting	SW5 setting*1	Display detail	Explanation for display	Unit
	Common	Not used	-	-
123456	Individual unit	Actual opening pulse of LEV (Direct-operated conversion value) 0 to 500	0 to 500 (When it is 100 pulse or more, it displays a hundredth, tens, and unit digit by turns.) Example: When 150 pulse, $\begin{aligned} & 0.5 \mathrm{~s} \\ & \square 1 \\ & \square \end{aligned}$	Pulse
	Common	Not used	-	-
	Individual unit	Error history	Displays a check code, and M-NET address of the unit which the check code was detected. Example: If the check code 2520 is detected in the address3, $\begin{array}{lll} 0.5 \mathrm{~s} & 0.5 \mathrm{~s} & 0.5 \mathrm{~s} \\ 03 & \rightarrow 25 & \rightarrow 20.0 \mathrm{~s} \\ 0 \end{array}$	Code display
	Common	The number of unit(s) operating in Thermo-ON	0 to 5	Number
123456	Individual unit	Operating status of unit	83: Abnormal 00: Stop 06: Forced stop 0C: Defrost 29: Hot adjust mode 05: Standby mode 2A: Auxiliary heater is ON. 0A: Thermo-ON 01: In operation	Code display
	Common	The number of indoor unit(s) connected to this branch box.	0 to 5	Number
	Individual unit	M-NET address	00 to FF Displays an M-NET address of the selected unit.	Code display
		Not used	-	-
	Individual unit	Capacity setting in Qj	03 to 50	Code display
	Common	Not used	-	-
	Individual unit	Indoor thermistor <pipe temperature/ liquid> (TH2)	-38 to 190 [-39 to 88] (When the temperature is $0^{\circ} \mathrm{F}$ or less, "-" and temperature are displayed by turns.) Example: When $-5^{\circ} \mathrm{F}$, $\begin{gathered} 0.5 \mathrm{~s} \\ -\square \\ \square \end{gathered} \quad 0.5 \mathrm{~s} \quad 2.0 \mathrm{~s}$	${ }^{\circ} \mathrm{F}$

[^5]The black square ($\mathbf{\square}$) indicates a switch position.

SW2 setting	SW5 setting*1	Display detail	Explanation for display	Unit
	Common	Not used		-
123456	Individual unit	Indoor thermistor <pipe temperature/ 2-phase> (TH5)	$-38 \text { to } 190[-39 \text { to } 88]$ (When the temperature is $0^{\circ} \mathrm{F}$ or less, ${ }^{-}-$" and temperature are displayed by turns.) Example: When $-5^{\circ} \mathrm{F}$, $\begin{array}{cc} 0.5 \mathrm{~s} & 0.5 \mathrm{~s} \\ -\square & \rightarrow \square 5 \end{array} \quad \rightarrow \square \square$	${ }^{\circ} \mathrm{F}$
	Common	Not used	-	-
	Individual unit	Branch box pipe thermistor (TH-A, B, C, D, E)	$-43 \text { to } 196[-42 \text { to } 91]$ (When the temperature is $0^{\circ} \mathrm{F}$ or less, " - " and temperature are displayed by turns.) Example: When $-5^{\circ} \mathrm{F}$, $\begin{gathered} 0.5 \mathrm{~s} \quad 0.5 \mathrm{~s} \\ -\square \quad \rightarrow \square 5 \\ \square \end{gathered}$	${ }^{\circ} \mathrm{F}$
	Common	Not used	-	-
	Individual unit	Indoor thermistor <room temperature> (TH1)	43 to 102 [8 to 39]	${ }^{\circ} \mathrm{F}$
	Common	Not used	-	-
	Individual unit	Set temperature of indoor unit	61 to 88 [10 to 31]	${ }^{\circ} \mathrm{F}$
	Common Individual unit	S/W version	Displays a S/W version number. Example: If it is a ver. 12.34, $\begin{array}{cc} 0.5 \mathrm{~s} & 0.5 \mathrm{~s} \\ 12 & \rightarrow 34 \end{array} \quad \rightarrow \square \square$	Code display
	Common	Not used	-	-
	Individual unit	LEV opening pulse (gear operated value)	0 to 2000	Pulse
	Common Individual unit	S/W ROM check sum	0000 to FFFF Example: If it is $0 B C 9 h$,	Code display

[^6]
8-12. SELECTING FUNCTIONS USING THE REMOTE CONTROLLER

Each function can be set as necessary using the remote controller. The setting of function for each unit can only be done by the remote controller. Select function available from the <Table 1> .
(1) Functions available when setting the unit number to 00

Note that the functions in the table below are available only when P-series indoor unit and the wired remote controller is used.
<Table 1> Function selections

Function	Settings	Mode No.	Setting No.	: Initial setting (when sent from the factory)	Remarks
Power failure automatic recovery	OFF	01	1		The setting can be made to each indoor unit individually.
	ON*		2	\bigcirc	
Indoor temperature detection	Average data from each indoor unit	02	1	\bigcirc	
	Data from the indoor unit with remote controller		2		
	Data from main remote controller		3		
LOSSNAY connectivity	Not supported	03	1	\bigcirc	
	Supported (Indoor unit does not intake outdoor air through LOSSNAY)		2		
	Supported (Indoor unit intakes outdoor air through LOSSNAY)		3		
Power supply voltage	230V	04	1	\bigcirc	
	208V		2		
Frost prevention temperature	$36^{\circ} \mathrm{F}\left[2^{\circ} \mathrm{C}\right]$	15	1		
	$37^{\circ} \mathrm{F}\left[3^{\circ} \mathrm{C}\right.$]		2	\bigcirc	
Humidifier control	When the compressor operates, the humidifier also operates.	16	1	\bigcirc	
	When the fan operates, the humidifier also operates.		2		

* After the power supply returns, the indoor unit will not operate for 3 minutes
(Some kind of indoor units operate for 30 seconds, after that, it stops for 3 minutes). This is normal operation.
Meaning of "Function setting"
Mode02:indoor temperature detecting

No.	Indoor temperature(ta)			
	Average data of the sensor on all the indoor units*	Initial setting	ta=A	ta $=A$
No. 2	The data of the sensor on the indoor unit that is connected with remote controller	Initial setting	ta=A	ta=A
	The data of the sensor on main remote controller	Initial setting	ta $=\mathrm{B}$	$t a=B$

*Since the setting is applied to each indoor unit while branch box is connected, the indoor unit is controlled based on the sensor data of itself, not the average data.

9-1. PRECAUTIONS AGAINST REFRIGERANT LEAKAGE

9-1-1. Introduction

R410A refrigerant of this air conditioner is non-toxic and non-flammable but leaking of large amount from an indoor unit into the room where the unit is installed may be deleterious. To prevent possible injury, the rooms should be large enough to keep the R410A concentration specified by ISO 5149-1 as follows.

Maximum concentration

Maximum refrigerant concentration of R410A of a room is $0.44 \mathrm{~kg} / \mathrm{m}^{3}$ accordance with ISO $5149-1$.
To facilitate calculation, the maximum concentration is expressed in units of $\mathrm{kg} / \mathrm{m}^{3}$ (kg of R410A per m^{3}) Maximum concentration of R410A: $0.44 \mathrm{~kg} / \mathrm{m}^{3}$
(ISO 5149-1)

9-1-2. Confirming procedure of R410A concentration

Follow (1) to (3) to confirm the R410A concentration and take appropriate treatment, if necessary.
(1) Calculate total refrigerant amount by each refrigerant system. Total refrigerant amount is precharged refrigerant at ex-factory plus additional charged amount at field installation.

Note:

When the air conditioning system consists of several independent refrigerant system, figure out the total refrigerant amount by each independent refrigerant system.
(2) Calculate room volumes $\left(\mathrm{m}^{3}\right)$ and find the room with the smallest volume

The part with \qquad represents the room with the smallest volume.
(a) Situation in which there are no partitions

(b) There are partitions, but there are openings that allow

(c) If the smallest room has mechanical ventilation apparatus that is linked to a household gas detection and alarm device, the calculations should be performed for the second smallest room.

(3) Use the results of calculations (1) and (2) to calculate the refrigerant concentration:

If the calculation results do not exceed the maximum concentration, perform the same calculations for the larger second and third room, etc., until it has been determined that nowhere the maximum concentration will be exceeded.

DISASSEMBLY PROCEDURE

10-1. OUTDOOR UNIT
MXZ-4C36NAHZ(-U1)

MXZ-5C42NAHZ(-U1)
Note: Turn OFF the power supply before disassembly.
MXZ-8C48NAHZ(-U1)
: Indicates the visible parts in the photos/figures.

OPERATING PROCEDURE

1. Removing the service panel and top panel
(1) Remove 3 service panel fixing screws (5 $\times 12$), then slide the hook on the right downward to remove the service panel.
(2) Remove screws (2 for front, 3 for rear/5 $\times 12$) of the top panel and remove it.
2. Removing the fan motor (MF1, MF2)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove 4 fan grille fixing screws (5×12) to detach the fan grille. (See Photo 1)
(4) Remove a nut (for right handed screw of M6) to detach the propeller. (See Photo 2)
(5) Disconnect the connectors, CNF1 and CNF2 on the multi controller circuit board in the electrical parts box.
(6) Remove 4 fan motor fixing screws (5×20) to detach the fan motor. (See Photo 3)

Note: Tighten the propeller fan with a torque of $5.7 \pm 0.3 \mathrm{~N} \cdot \mathrm{~m}$. [$4.2 \pm 0.2 \mathrm{ft}=\mathrm{lbs}$]
3. Removing the electrical parts box
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Disconnect the connecting wire from terminal block.
(4) Remove all of the following connectors from multi controller circuit board;
<Diagram symbol in the connector housing>

- Fan motor (CNF1, CNF2)
- Thermistor <HIC pipe> (TH2)
- Thermistor <Outdoor liquid pipe> (TH3)
- Thermistor <Compressor> (TH4)
- Thermistor <Suction pipe/Ambient, Outdoor> (TH7/6)
- High pressure switch (63H)
- High pressure sensor (63HS)
- Low pressure sensor (63LS)
- 4-way valve (21S4)
- Bypass valve (SV1, SV2)
- Electronic expansion valve (LEV-A, LEV-B)
- Base heater (SS)

Pull out the disconnected wire from the electrical parts box.
(5) Remove the terminal cover and disconnect the compressor lead wire from the comp. terminal. (See Figure 1)
Note: The terminal cover can be easily removed by using a blade of flathead screwdriver.

Figure 1

From the previous page.

OPERATING PROCEDURE

(6) Remove 2 electrical parts box fixing screws (4×10), then detach the electrical parts box by pulling it upward. The electrical parts box is fixed with 2 hooks on the left and 1 hook on the right.
4. Removing the thermistor <Suction pipe> (TH6)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Disconnect the connector, TH7/6 (red), on the multi controller circuit board in the electrical parts box.
(4) Loosen the wire clamps on the side of the electrical parts box, and next to it.
(5) Pull out the thermistor <Suction pipe> (TH6) from the sensor holder.

Note: When replacing thermistor <Suction pipe> (TH6), replace it together with thermistor <Ambient> (TH7) since they are combined together.
Refer to procedure No. 5 below to remove thermistor <Ambient> (TH7).
5. Removing the thermistor <Ambient> (TH7)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Disconnect the connector TH7/6 (red) on the multi controller circuit board in the electrical parts box.
(4) Loosen the wire clamps on top of the electrical parts box. (See Photo 6)
(5) Pull out the thermistor <Ambient> (TH7) from the sensor holder.

Note: When replacing thermistor <Ambient> (TH7), replace it together with thermistor <Suction pipe> (TH6), since they are combined together. Refer to procedure No. 4 above to remove thermistor <Suction pipe> (TH6).

OPERATING PROCEDURE

6. Removing the thermistor <Outdoor liquid pipe> (TH3) and Photo 9 thermistor <Compressor> (TH4), thermistor <HIC pipe> (TH2)
(1) Remove the service panel. (See Photo 1)
(2) Disconnect the connectors, TH3 (white) and TH4 (white), TH2 (black) on the multi controller circuit board in the electrical parts box.
(3) Loosen the clamp for the lead wire in the rear of the electrical parts box.
(4) Pull out the thermistor <Outdoor liquid pipe> (TH3) and thermistor <Compressor> (TH4) from the sensor holder. (See Photo 7 and 9)
7. Removing the 4-way valve coil (21S4)
(1) Remove the service panel. (See Photo 1)
[Removing the 4-way valve coil]
(2) Remove 4-way valve coil fixing screw (M5 $\times 7$).
(3) Remove the 4 -way valve coil by sliding the coil toward you.
(4) Disconnect the connector 21 S 4 (green) on the multi controller circuit board in the electrical parts box.
8. Removing the 4 -way valve
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box (See Photo 5)
(4) Remove 3 valve bed fixing screws (4×10) and 4 ball valve and stop valve fixing screws (5×16), then remove the valve bed. (See Photo 4 and 7)
(5) Remove 2 cover panel fixing screws (5×12), then slide the cover panel (front) upward to remove it.
(The cover panel (front) is fixed to the cover panel (rear) with a hook on the rear side. (See Photo 4)
(6) Remove the cover panel (rear) fixing screws (2 for right side and 2 for rear/ 5×12), then slide the cover panel (rear) upward to remove it. (See Photo 4)
(The cover panel (rear) is fixed to the side panel (R) with 2 screws.)
(7) Remove 3 side panel (R) fixing screws (5×12) in the rear of the unit, then slide the side panel (R) upward to remove it. (The side panel (R) is fixed to the side plate with hooks on the rear side.)
(8) Remove the 4 -way valve coil. (See Photo 10)
(9) Recover refrigerant.
(10) Remove the welded part of 4-way valve.

Notes:

1. Recover refrigerant without spreading it in the air.
2. The welded part can be removed easily by removing the side panel (R).
3. When installing the 4-way valve, cover it with a wet cloth to prevent it from heating $\left(248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right]\right.$ or more), then braze the pipes so that the inside of pipes are not oxidized.

Photo 9
 Photo 9

PHOTOS/FIGURES

Photo 10

OPERATING PROCEDURE

9. Removing bypass valve coil (SV1, SV2) and bypass valve
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the bypass valve coil fixing screw ($\mathrm{M} 4 \times 6$).
(7) Remove the bypass valve coil by sliding the coil upward.
(8) Disconnect the connector SV1 (gray) or SV2 (blue) on the multi controller circuit board in the electrical parts box.
(9) Remove the electrical parts box. (See Photo 5)
(10) Recover refrigerant.
(11) Remove the welded part of bypass valve.

Refer to the notes below.
10. Removing the high pressure switch $(63 \mathrm{H})$ and high pressure sensor (63 HS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Pull out the lead wire of high pressure switch and high pressure sensor.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of high pressure switch and high pressure sensor.
Refer to the notes below.
11. Removing the low pressure sensor (63LS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Disconnect the connector 63LS (blue) on the multi controller circuit board in the electrical parts box.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of low pressure sensor.

Refer to the notes below.
12. Removing electronic expansion valve (LEV-A, LEV-B)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the electrical expansion valve coil. (See Photo $11,12)$
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of electrical expansion valve.

Refer to the notes on the right.

PHOTOS/FIGURES

Photo 12

Notes:

1. Recover refrigerant without spreading it in the air.
2. The welded part can be removed easily by removing the side panel (R).
3. When installing the following parts, cover it with a wet cloth to prevent it from heating as the temperature below, then braze the pipes so that the inside of pipes are not oxidized;

- Bypass valve (procedure 9), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right]$ or more
- High pressure switch and high pressure sensor (procedure 10), $212^{\circ} \mathrm{F}\left[100^{\circ} \mathrm{C}\right.$] or more
- Low pressure sensor (procedure 11), $212^{\circ} \mathrm{F}\left[100^{\circ} \mathrm{C}\right]$ or more
- LEV (procedure 12), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right.$] or more

OPERATING PROCEDURE

13. Removing the compressor (MC)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove 2 front cover panel fixing screws (5×12) and remove the front cover panel. (See Photo 4)
(4) Remove front panel fixing screws, $5(5 \times 12)$ and $2(4 \times$ $10)$ and remove the front panel. (See Photo 4)
(5) Remove 4 back cover panel fixing screws (5×12) and remove the back cover panel.
(6) Remove the electrical parts box. (See Photo 5)
(7) Remove the valve bed. (Refer to procedure 8 (4))
(8) Remove 3 separator fixing screws (4×10) and remove the separator. (See Figure 2)
(9) Recover refrigerant.
(10) Remove the 3 compressor fixing nuts for motor using spanner or adjustable wrench.
(11) Remove the welded pipe of motor for compressor inlet and outlet and then remove the compressor.
Note: Recover refrigerant without spreading it in the air.
14. Removing the accumulator
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the front cover panel. (Refer to procedure 13 (3))
(4) Remove the back cover panel. (Refer to procedure 13 (5))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the electrical parts box. (See Photo 5)
(7) Remove the valve bed. (See procedure 8 (4))
(8) Recover refrigerant.
(9) Remove 2 welded pipes of accumulator inlet and outlet.
(10) Remove 2 accumulator leg fixing screws (4×10). (See Photo 15)
Note: Recover refrigerant without spreading it in the air.

Figure 2

Photo 15

OPERATING PROCEDURE

15. Removing the reactor (DCL)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box (See Photo 5)
(4) Remove 4 screws for reactor (4×10) to remove the reactor. (See Figure 3)

PHOTOS/FIGURES
Figure 3

Photo 16

Photo 17

MXZ-8C48NA MXZ-8C48NA-U1
Note: Turn OFF the power supply before disassembly.

OPERATING PROCEDURE	PHOTOS/FIGURES
1. Removing the service panel and top panel (1) Remove 3 service panel fixing screws (5×12) and slide the hook on the right downward to remove the service panel. (2) Remove screws (2 for front, 3 for rear/ 5×12) of the top panel and remove it.	
2. Removing the fan motor (MF1, MF2) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Remove 4 fan grille fixing screws (5×12) to detach the fan grille. (See Photo 1) (4) Remove a nut (for right handed screw of M6) to detach the propeller. (See Photo 2) (5) Disconnect the connectors, CNF1 and CNF2 on multi controller circuit board in electrical parts box. (6) Remove 4 fan motor fixing screws (5×20) to detach the fan motor. (See Photo 3) Note: Tighten the propeller fan with a torque of 5.7 ± 0.3 $\mathrm{N} \cdot \mathrm{m}[4.2 \pm 0.2 \mathrm{ft}=\mathrm{lbs}]$	Photo 2 Photo 3 Fan motor fixing screws
3. Removing the electrical parts box (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connecting wire from terminal block. (4) Remove all the following connectors from multi controller circuit board; <Diagram symbol in the connector housing> - Fan motor (CNF1, CNF2) - Thermistor <HIC pipe> (TH2) - Thermistor <Outdoor liquid pipe> (TH3) - Thermistor <Compressor> (TH4) - Thermistor <Suction pipe/Ambient, Outdoor> (TH7/6) - High pressure switch (63H) - High pressure sensor (63HS) - Low pressure sensor (63LS) - 4-way valve (21S4) - Bypass valve (SV1) - Electronic expansion valve (LEV-A, LEV-B) Pull out the disconnected wire from the electrical parts box. (5) Remove the terminal cover and disconnect the compressor lead wire from the comp. terminal. (See Figure 1) Note: The terminal cover can be easily removed by using a blade of flathead screwdriver. Figure 1	

From the previous page.

OPERATING PROCEDURE	PHOTOS/FIGURES
(6) Remove 2 electrical parts box fixing screws (4×10) and detach the electrical parts box by pulling it upward. The electrical parts box is fixed with 2 hooks on the left and 1 hook on the right.	
4. Removing the thermistor <Suction pipe> (TH6) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connector, TH7/6 (red), on the Multi controller circuit board in the electrical parts box. (4) Loosen the wire clamps on top of the electrical parts box. (5) Pull out the thermistor <Suction pipe> (TH6) from the sensor holder. Note: When replacing thermistor <Suction pipe> (TH6), replace it together with thermistor <Ambient> (TH7) since they are combined together. Refer to procedure No. 5 below to remove thermistor <Ambient> (TH7).	Photo 6 Electrical parts box
5. Removing the thermistor <Ambient> (TH7) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connector TH7/6 (red) on the multi controller circuit board in the electrical parts box. (4) Loosen the wire clamps on top of the electrical parts box. (See Photo 6) (5) Pull out the thermistor <Ambient> (TH7) from the sensor holder. Note: When replacing thermistor <Ambient> (TH7), replace it together with thermistor <Suction pipe> (TH6), since they are combined together. Refer to procedure No. 4 above to remove thermistor <Suction pipe> (TH6).	Photo 8 Lead wire of thermistor <Ambient> (TH7)

OPERATING PROCEDURE
 PHOTOS/FIGURES

6. Removing the thermistor <Outdoor liquid pipe> (TH3) and thermistor <Compressor> (TH4), thermistor <HIC pipe> (TH2)
(1) Remove the service panel. (See Photo 1)
(2) Disconnect the connectors, TH3 (white) and TH4 (white), TH2 (black) on the multi controller circuit board in the electrical parts box.
(3) Loosen the clamp for the lead wire in the rear of the electrical parts box.
(4) Pull out the thermistor <Outdoor liquid pipe> (TH3) and thermistor <Compressor> (TH4) from the sensor holder. (See Photo 7 and 9)
7. Removing the 4 -way valve coil (21S4)
(1) Remove the service panel. (See Photo 1)
[Removing the 4-way valve coil]
(2) Remove 4-way valve coil fixing screw (M5 $\times 7$).
(3) Remove the 4-way valve coil by sliding the coil toward you.
(4) Disconnect the connector 21 S 4 (green) on the multi controller circuit board in the electrical parts box.
8. Removing the 4-way valve
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box. (See Photo 5)
(4) Remove 3 valve bed fixing screws (4×10) and 4 ball valve and stop valve fixing screws (5×16) and then remove the valve bed. (See Photo 4 and 7)
(5) Remove 2 cover panel fixing screws (5×12), then slide the cover panel (front) upward to remove it.
(The cover panel (front) is fixed to the cover panel (rear) with a hook on the rear side. (See Photo 4)
(6) Remove the cover panel (rear) fixing screws (2 for right side and 2 for rear/ 5×12), then slide the cover panel (rear) upward to remove it. (See Photo 4)
(The cover panel (rear) is fixed to the side panel (R) with 2 screws.)
(7) Remove 3 side panel (R) fixing screws (5×12) in the rear of the unit, then slide the side panel (R) upward to remove it. (The side panel (R) is fixed to the side plate with hooks on the rear side.)
(8) Remove the 4-way valve coil. (See Photo 10)
(9) Recover refrigerant.
(10) Remove the welded part of 4-way valve.

Note:

1. Recover refrigerant without spreading it in the air.
2. The welded part can be removed easily by removing the side panel (R).
3. When installing the four-way valve, cover it with a wet cloth to prevent it from heating ($120^{\circ} \mathrm{C}$ or more), then braze the pipes so that the inside of pipes are not oxidized.

OPERATING PROCEDURE

9. Removing bypass valve coil (SV1) and bypass valve
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8 (5))
(4) Remove the cover panel (rear). (Refer to procedure 8 (6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the bypass valve coil fixing screw (M4 $\times 6$).
(7) Remove the bypass valve coil by sliding the coil upward.
(8) Disconnect the connector SV1 (gray) on the multi controller circuit board in the electrical parts box.
(9) Remove the electrical parts box. (See Photo 5)
(10) Recover refrigerant.
(11) Remove the welded part of bypass valve.

Refer to the notes below.
10. Removing the high pressure switch (63H) and high pressure sensor (63 HS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8 (5)
(4) Remove the cover panel (rear). (Refer to procedure 8 (6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Pull out the lead wire of high pressure switch and high pressure sensor.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of high pressure switch and high pressure sensor.
Refer to the notes below.
11. Removing the low pressure sensor (63LS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8 (5))
(4) Remove the cover panel (rear). (Refer to procedure 8 (6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Disconnect the connector 63LS (blue) on the multi controller circuit board in the electrical parts box.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of low pressure sensor.

Refer to the notes below.
12. Removing electrical expansion valve (LEV-A, LEV-B)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8 (5))
(4) Remove the cover panel (rear). (Refer to procedure 8 (6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the electrical expansion valve coil. (See Photo 11,12)
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of electrical expansion valve.

Refer to the notes on the right.

PHOTOS/FIGURES

Photo 11

Photo 12

Notes:

1. Recover refrigerant without spreading it in the air.
2. The welded part can be removed easily by removing the side panel (R).
3. When installing the following parts, cover it with a wet cloth to prevent it from heating as the temperature below, then braze the pipes so that the inside of pipes are not oxidized;

- Bypass valve (procedure 9), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right.$] or more
- High pressure switch and high pressure sensor (procedure 10), $212^{\circ} \mathrm{F}\left[100^{\circ} \mathrm{C}\right.$] or more
- Low pressure sensor (procedure 11), $212^{\circ} \mathrm{F}$ [$100^{\circ} \mathrm{C}$] or more
- LEV (procedure 12), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right.$] or more

	PHOTOS/FIGURES
13. Removing the compressor (MC) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Remove 2 front cover panel fixing screws (5 $\times 12$) and remove the front cover panel. (See Photo 4) (4) Remove front panel fixing screws, $5(5 \times 12)$ and $2(4 \times$ 10) and remove the front panel. (See Photo 4) (5) Remove 4 back cover panel fixing screws (5×12) and remove the back cover panel. (6) Remove the electrical parts box. (See Photo 5) (7) Remove the valve bed. (Refer to procedure 8 (4)) (8) Remove 3 separator fixing screws (4×10) and remove the separator. (See Figure 2) (9) Recover refrigerant. (10) Remove the 3 compressor fixing nuts for motor using	

(1) Remove the welded pipe of motor for compressor inlet and outlet and then remove the compressor.
Note: Recover refrigerant without spreading it in the air.

14. Removing the accumulator

(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the front cover panel. (Refer to procedure 13 (3))
(4) Remove the back cover panel. (Refer to procedure 13 (5))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the electrical parts box. (See Photo 5)
(7) Remove the valve bed. (Refer to procedure 8 (4))
(8) Recover refrigerant.
(9) Remove 2 welded pipes of accumulator inlet and outlet.
(10) Remove 2 accumulator leg fixing screws (4×10). (See Photo 16)
Note: Recover refrigerant without spreading it in the air.

Figure 2

Photo 15

Photo 16

OPERATING PROCEDURE

15. Removing the reactor (DCL)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box (See photo 5)
(4) Remove 4 screws for reactor (4×10) to remove the reactor. (See Figure 3)

PHOTOS/FIGURES
Figure 3

OPERATING PROCEDURE

1. Removing the service panel and top panel
(1) Remove 3 service panel fixing screws (5×12) and slide the hook on the right downward to remove the service panel.
(2) Remove screws (2 for front, 3 for rear/ 5×12) of the top panel and remove it.
panel and remove it.
2. Removing the fan motor (MF1, MF2)
(1) Remove the service panel. (See Photo 1)
(2) Remove 4 fan grille fixing screws (5×12) to detach the fan grille. (See Photo 1)
(3) Remove a nut (for right handed screw of M6) to detach the propeller. (See Photo 2)
(4) Disconnect the connectors, CNF1 and CNF2 on multi controller board in electrical parts box.
(5) Remove 4 fan motor fixing screws (5×20) to detach the fan motor. (See Photo 3)
Note: Tighten the propeller fan with a torque of 5.7 ± 0.3 $\mathrm{N} \cdot \mathrm{m}[4.2 \pm 0.2 \mathrm{ft}=\mathrm{lbs}]$
3. Removing the electrical parts box
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Disconnect the connecting wire from terminal block. (See Photo 5)
(4) Remove all the following connectors from outdoor multi controller circuit board;
<Diagram symbol in the connector housing>

- Fan motor (CNF1, CNF2)
- Thermistor <HIC pipe> (TH2)
- Thermistor <Outdoor liquid pipe> (TH3)
- Thermistor <Compressor> (TH4)
- Thermistor <Suction pipe/Ambient, Outdoor> (TH7/6)
- High pressure switch (63H)
- High pressure sensor (63HS)
- Low pressure sensor (63LS)
- 4-way valve (21S4)
- Bypass valve (SV1)
- Electronic expansion valve (CNLVA/CNLVB)

Pull out the disconnected wire from the electrical parts box.
(5) Remove the terminal cover and disconnect the compressor lead wire.
Note: The terminal cover can be easily removed by using a blade of flathead screwdriver.
Figure 1

PHOTOS/FIGURES

Photo 4

From the previous page.

OPERATING PROCEDURE	PHOTOS/FIGURES
(6) Remove 2 electrical parts box fixing screws (4×10) then detach the electrical parts box by pulling it upward. The electrical parts box is fixed with 2 hooks on the left and 1 hook on the right.	Photo 5
4. Removing the thermistor <Suction pipe> (TH6) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connectors, TH7/6 (red), on the multi controller circuit board in the electrical parts box. (4) Loosen the wire clamps on the back of electrical parts box. (5) Pull out the thermistor <Suction pipe> (TH6) from the sensor holder. Note: When replacing thermistor <Suction pipe> (TH6), replace it together with thermistor <Ambient> (TH7) since they are combined together. Refer to procedure No. 5 below to remove thermistor <Ambient> (TH7).	Photo 6
5. Removing the thermistor <Ambient> (TH7) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connector TH7/6 (red) on the multi controller circuit board in the electrical parts box. (4) Loosen the wire clamps on top of the electrical parts box. (See Photo 6.) (5) Pull out the thermistor <Ambient> (TH7) from the sensor holder. Note: When replacing thermistor <Ambient> (TH7), replace it together with thermistor <Suction pipe> (TH6), since they are combined together. Refer to procedure No. 4 above to remove thermistor <Suction pipe> (TH6).	Photo 7 Photo 8 Lead wire of thermistor <Ambient> (TH7)

OPERATING PROCEDURE

6. Removing the thermistors

Thermistor <HIC> (TH2) and thermistor <Compressor> (TH4)
(1) Remove the service panel. (See Photo 1)
(2) Disconnect the connectors, TH2 (black) and TH4 (white), on the multi controller board in the electrical parts box.
(3) Pull out the thermistor <HIC> (TH2) and thermistor <Compressor> (TH4) from the sensor holder. (See Photo 9-1)

Thermistor <Outdoor pipe> (TH3)

(1) Remove the service panel. (See Photo 1)
(2) Disconnect the connector, TH3 (white), on the Multi controller board in the electrical parts box.
(3) Loosen the clamp for the lead wire on the bottom of the electrical parts box.
(4) Pull out the thermistor <Outdoor pipe> (TH3) from the sensor holder. (See Photo 9-2)

7. Removing the 4-way valve coil (21S4)

(1) Remove the service panel. (See Photo 1)
[Removing the 4 -way valve coil]
(2) Remove 4-way valve coil fixing screw ($\mathrm{M} 4 \times 6$).
(3) Remove the 4 -way valve coil by sliding the coil toward you.
(4) Disconnect the connector 21 S4 (green) on the multi controller circuit board in the electrical parts box.
8. Removing the 4 -way valve
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box (See Photo 5)
(4) Remove 3 valve bed fixing screws (4×10) and 4 ball valve and stop valve fixing screws (5×16), then remove the valve bed. (See Photo 4)
(5) Remove 2 cover panel fixing screws (5×12), then slide the cover panel (front) upward to remove it.
(The cover panel (front) is fixed to the cover panel (rear) with a hook on the rear side. (See Photo 4)
(6) Remove the cover panel (rear) fixing screws (2 for right side and 2 for rear/ 5×12), then slide the cover panel (rear) upward to remove it. (See Photo 4)
(The cover panel (rear) is fixed to the side panel (R) with 2 screws.)
(7) Remove 3 side panel (R) fixing screws (5×12) in the rear of the unit, then slide the side panel (R) upward to remove it. (The side panel (R) is fixed to the side plate with hooks on the rear side.)
(8) Remove the 4 -way valve coil. (See Photo 10)
(9) Recover refrigerant.
(10) Remove the welded part of 4-way valve.

1. Recover refrigerant without spreading it in the air.
2. The welded part can be removed easily by removing the right side panel.
3. When installing the four-way valve, cover it with a wet cloth to prevent it from heating $248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$ or more, then braze the pipes so that the inside of pipes are not oxidized.

Photo 10

OPERATING PROCEDURE

9. Removing bypass valve coil (SV1) and bypass valve
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the bypass valve coil fixing screw (M4 $\times 6$).
(7) Remove the bypass valve coil by sliding the coil upward.
(8) Disconnect the connector SV1 (gray) on the multi controller circuit board in the electrical parts box.
(9) Remove the electrical parts box. (See Photo 5)
(10) Recover refrigerant.
(11) Remove the welded part of bypass valve.

Refer to the notes below.
10. Removing the high pressure switch $(63 \mathrm{H})$ and high pressure sensor (63 HS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Pull out the lead wire of high pressure switch and high pressure sensor.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of high pressure switch and high pressure sensor.
Refer to the notes below.
11. Removing the low pressure sensor (63LS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Disconnect the connector 63LS (blue) on the multi controller circuit board in the electrical parts box.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of low pressure sensor.

Refer to the notes below.
12. Removing electronic expansion valve (LEV-A, LEV-B)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the electronic expansion valve coil. (See Photo 12)
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of electronic expansion valve.

Photo 12

valve coil (LEV-B)

sensor (63LS)

Notes:

1. Recover refrigerant without spreading it in the air.
2. The welded part can be removed easily by removing the right side panel.
3. When installing the following parts, cover it with a wet cloth to prevent it from heating as the temperature below, then braze the pipes so that the inside of pipes are not oxidized;

- Bypass valve (procedure 9), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right]$ or more
- High pressure switch and high pressure sensor (procedure 10), $212^{\circ} \mathrm{F}$ [$100^{\circ} \mathrm{C}$] or more
- Low pressure sensor (procedure 11), $100^{\circ} \mathrm{C}$ or more
- LEV (procedure 12), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right.$] or more

OPERATING PROCEDURE

13. Removing the reactor (DCL)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box (See photo 5)
(4) Remove 4 screws for reactor (4×10) to remove the reactor. (See Figure 2)

PHOTOS/FIGURES

Figure 2

Photo 13

Photo 14

OPERATING PROCEDURE

15. Removing the accumulator
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box. (See Photo 5)
(4) Remove the valve bed. (See procedure 8 (4))
(5) Remove the cover panel (front). (Refer to procedure 8(5))
(6) Remove the cover panel (rear) (Refer to procedure 8(6))
(7) Remove the side panel (R). (Refer to procedure 8 (7))
(8) Recover refrigerant.
(9) Remove 2 welded pipes of accumulator inlet and outlet.
(10) Remove 2 accumulator leg fixing screws (4×10). (See Photo 16)
Note: Recover refrigerant without spreading it in the air.

PHOTOS/FIGURES
Photo 15

Photo 16

OPERATING PROCEDURE	PHOTOS/FIGURES
1. Removing the controller cover and under panel (1) Remove 3 controller cover fixing screws (4×10) to detach the controller cover. (See Photo 1) (2) Remove 4 under panel fixing screws (4×10) to remove the under panel. (See Photo 1)	Photo 1
2. Removing the thermistor (TH-A to E*) (1) Remove the controller cover. (See Photo 1) (2) Remove the under panel. (See Photo 1) (3) Remove 8 insulations, then remove 9 pipe box (under) fixing screws (4×10). (See Photo 2-1) (4) Pull out the thermistor(s), TH-A to E, from the sensor holders mounted on the gas pipe. (See Photo 2-2) (5) Loosen the insulation sheet which bundles the thermistor connectors. (6) Loosen the side clamps, then disconnect the connector(s) on the controller board. (7) Pull out the lead wire(s) through the hole to the controller board side. *TH-A to C for PAC-MKA30/31BC. (See Photo 2-3) Notes: 1. Attach the insulation sheet to the thermistor(s) and the lead wire(s) of LEV coil after replacing thermistor(s). 2. Install the pipe box not to twine the lead wire(s) and the pipe cover around the pipe box.	Photo 2-1 Pipe box (under) fixing screws

OPERATING PROCEDURE
3. Removing the LEV coil (LEV-A to E*)
(1) Remove the controller cover. (See Photo 1)
(2) Remove the under cover. (See Photo 1)
(3) Remove 8 insulations, then remove 9 pipe cover fixing
screws (4 x 10). (See Photo 2-1)
(4) Cut the bands that fixes the lead wire, then pull out the
LEV coil(s) (LEV-A to E*). (See Photo 3)
(5) Loosen the insulation sheet which bundles the LEV lead
wires.
(6) Loosen the side clamps, then disconnect the connector(s)
on the controller board.
(7) Pull out the lead wire(s) through the hole to the pipe box
side.
(See Photo 2-2 or 2-3)
*LEV-A to C for PAC-MKA30/31BC. (See Photo 2-3)
Notes:

1. Attach the insulation sheet to the thermistor(s) and the
lead wire(s) of LEV coil after replacing thermistor(s).
2. Install the pipe box not to twine the lead wire(s) and the
pipe cover around the pipe box.

5. Removing the LEV assy

(1) Remove the controller cover. (See Photo 1)
(2) Remove the under panel. (See Photo 1)
(3) Remove 8 the insulations, then remove 9 pipe box (under) fixing screws (4×10). (See Photo 2-1)
(4) Loosen the side clamps, then disconnect the LEV and thermistor connectors on the controller board.
(5) Pull out the lead wires through the hole to the pipe box side.
<Removing the header assy>
(6) Cut the band which fixes the header assy and LEV assy together, then remove the rubber mount. (See Photo 3)
(7) Remove the header assy. (See Photo 3)

<Disassembling the pipe box>

(8) Remove 2 side panel fixing screws (4×10). (See Photo 5-1)
(9) Pull out the pipe box (top) and separate it from the side panel. (See Photo 5-2)
(10) Turn the pipe box (top) upside down. (See Photo 5-3).
(11) Remove 5 insulations, then remove 5 pipe box (top) fixing screws (4×10).
(12) Turn the pipe box (top) upside down again, facing the pipe side up.
(13) Separate the pipe box (center) from the pipe box (top). (See Photo 5-4.)
(14) Remove the LEV assy.
<Pipe box cap only for PAC-MKA30/31BC>
The pipe box caps are placed in 2 unused pipe holes between the pipe box top, center and under. (See Photo 5-5)

Notes:

1. Attach the insulation sheet to the thermistor(s) and the lead wire(s) of LEV coil after replacing thermistor(s).
2. Install the pipe box not to twine the lead wire(s) and the pipe cover around the pipe box.

Photo 5-4

Photo 5-1

Side panel fixing screws

Photo 5-2

Photo 5-3

Pipe box (top) fixing screws

MITSUBISHI ELECTRIC CORPORATION

[^0]: *3 For MXZ-8C60NA; When connecting the SEZ and PEAD-series units, the total system wide capacity per 1 branch box should be 100% or below including the ducted units. (Only if connecting to PAC-MKA50/51BC)
 *4 When not outside units 60: A branch box can connect to maximum 3 of the ducted units. When connecting with 3 of the ducted units per 1 branch box, other indoor units cannot be connected.
 When outside units 60: A branch box can connect to maximum 2 of the ducted units. When connecting with 1 and over 1 of the ducted units, the total ability including of the ducted units is 100% and below 100%.
 *5 When the system includes 1 unit of ducted units, the number of the maximum connectable indoor units is decreased as follows: 3 for MXZ-4C36NAHZ-U1, 4 for MXZ-5C42NAHZ-U1, and 6 for MXZ-8C48NA(HZ)-U1 and MXZ-8C60NA-U1

[^1]: *1 Rating conditions Cooling Indoor : D.B. $80^{\circ} \mathrm{F} /$ W.B. $67^{\circ} \mathrm{F}$ [D.B. $26.7^{\circ} \mathrm{C} / \mathrm{W} . \mathrm{B} \cdot 19.4^{\circ} \mathrm{C}$]
 Outdoor : D.B. $95^{\circ} \mathrm{F}$ [D.B. $\left.35.0^{\circ} \mathrm{C}\right]$
 Heating Indoor : D.B. $70^{\circ} \mathrm{F}$ [D.B. $21.1^{\circ} \mathrm{C}$]
 Outdoor : D.B. $47^{\circ} \mathrm{F} / \mathrm{W} . \mathrm{B} .43^{\circ} \mathrm{F}$ [D.B. $8.3^{\circ} \mathrm{C} / \mathrm{W} . \mathrm{B} .6 .1^{\circ} \mathrm{C}$]
 *2 Conditions
 Heating Indoor : D.B. $70^{\circ} \mathrm{F}$ [D.B. $\left.21.1^{\circ} \mathrm{C}\right]$
 Outdoor : D.B. $17^{\circ} \mathrm{F} / \mathrm{W} . \mathrm{B} .15^{\circ} \mathrm{F}$ [D.B. $-8.3^{\circ} \mathrm{C} /$ W.B. $-9.4^{\circ} \mathrm{C}$]
 ${ }^{* 3}$ D.B. 5 to $115^{\circ} \mathrm{F}$ [D.B. -15 to $46^{\circ} \mathrm{C}$], when an optional Air Outlet Guide is installed
 *4 131 ft [40 m], in case of installing outdoor unit lower than indoor unit.
 Note: Refer to the indoor unit's service manual for the indoor units specifications.

[^2]:

[^3]: *3 During heating operation and the ambient temperature is $39^{\circ} \mathrm{F}\left[4^{\circ} \mathrm{C}\right]$ or below, the freeze prevention heater is energized.
 ${ }^{*} 4$ During heating mode is OFF (include thermo-OFF in cooling mode), and the ambient temperature is $39^{\circ} \mathrm{F}$ [$4^{\circ} \mathrm{C}$] or below, the freeze prevention heater is energized

[^4]: ${ }^{* 1}$ Refer to the <Table 1> for the appropriate setting for the function.

[^5]: ${ }^{* 1}$ Refer to the <Table 1> for the appropriate setting for the function.

[^6]: ${ }^{* 1}$ Refer to the <Table 1> for the appropriate setting for the function.

