March 2017
No. OCH613 REVISED EDITION-A

TECHNICAL \& SERVICE MANUAL

<Outdoor unit> [Model name]

PUMY-P60NKMU1

Salt proof model

PUMY-P60NKMU1-BS
[Service Ref.]
PUMY-P60NKMU1

Revision:

- Corrected some descriptions in "4-2. CORRECTION BY TEMPERATURE" in REVISED EDITION-A.
- Some other descriptions have been also modified.

OCH613 is void.

Note:

- This service manual describes technical data of the outdoor units only.

CONTENTS

1. SAFETY PRECAUTION ... 2
2. OVERVIEW OF UNITS....................................... 5
3. SPECIFICATIONS .. 10
4. DATA ... 11
5. OUTLINES AND DIMENSIONS 24
6. WIRING DIAGRAM... 25
7. NECESSARY CONDITIONS FOR SYSTEM CONSTRUCTION....... 26
8. TROUBLESHOOTING... 36
9. ELECTRICAL WIRING 111
10. REFRIGERANT PIPING TASKS 116
11. DISASSEMBLY PROCEDURE 120

PARTS CATALOG (OCB613)

OUTDOOR UNIT

1-1. CAUTIONS RELATED TO NEW REFRIGERANT

Cautions for units utilizing refrigerant R410A

Use new refrigerant pipes.
Avoid using thin pipes.

> Make sure that the inside and outside of refrigerant piping is clean and it has no contaminants such as sulfur, oxides, dirt, shaving particles, etc, which are hazard to refrigerant ccycle.
> In addition, use pipes with specified thickness.

Contamination inside refrigerant piping can cause deterioration of refrigerant oil, etc.

> Store the piping indoors, and both ends of the piping sealed until just before brazing. (Leave elbow joints, etc. in their packaging.)
> If dirt, dust or moisture enters into refrigerant cycle, that can cause deterioration of refrigerant oil or malfunction of compressor.

> The refrigerant oil applied to flare and flange connections must be ester oil, ether oil or alkylbenzene oil in a small amount.
> If large amount of mineral oil enters, that can cause deterioration of refrigerant oil, etc.

Charge refrigerant from liquid phase of gas cylinder.

If the refrigerant is charged from gas phase, composition change may occur in refrigerant and the efficiency will be lowered.

Do not use refrigerant other than R410A.

If other refrigerant (R22, etc.) is used, chlorine in refrigerant can cause deterioration of refrigerant oil, etc.

Use a vacuum pump with a reverse flow check valve.
Vacuum pump oil may flow back into refrigerant cycle and that can cause deterioration of refrigerant oil, etc.

Use the following tools specifically designed for use with R410A refrigerant.
The following tools are necessary to use R410A refrigerant.

Tools for R410A	
Gauge manifold	Flare tool
Charge hose	Size adjustment gauge
Gas leak detector	Vacuum pump adaptor
Torque wrench	Electronic refrigerant charging scale

Handle tools with care.

If dirt, dust or moisture enters into refrigerant cycle, that can cause deterioration of refrigerant oil or malfunction of compressor.

Do not use a charging cylinder.

If a charging cylinder is used, the composition of refrigerant will change and the efficiency will be lowered.

Ventilate the room if refrigerant leaks during operation. If refrigerant comes into contact with a flame, poisonous gases will be released.

Use the specified refrigerant only.

Never use any refrigerant other than that specified. Doing so may cause a burst, an explosion, or fire when the unit is being used, serviced, or disposed of.
Correct refrigerant is specified in the manuals and on the spec labels provided with our products.
We will not be held responsible for mechanical failure, system malfunction, unit breakdown or accidents caused by failure to follow the instructions.

[1] Cautions for service

(1) Perform service after recovering the refrigerant left in unit completely.
(2) Do not release refrigerant in the air.
(3) After completing service, charge the cycle with specified amount of refrigerant.
(4) If moisture or foreign matter might have entered the refrigerant piping during service, ensure to remove them.

[2] Additional refrigerant charge

When charging directly from cylinder
(1) Check that cylinder for R410A on the market is a syphon type.
(2) Charging should be performed with the cylinder of syphon stood vertically. (Refrigerant is charged from liquid phase.)

[3] Service tools

Use the below service tools as exclusive tools for R410A refrigerant.

No.	Tool name	Specifications
(1)	Gauge manifold	- Only for R410A
		- Use the existing fitting specifications. (UNF1/2)
		- Use high-tension side pressure of 768.7 PSI [5.3 MPa.G] or over.
(2)	Charge hose	- Only for R410A
		- Use pressure performance of 738.2 PSI [5.09MPa.G] or over.
(3)	Electronic scale	-
(4)	Gas leak detector	- Use the detector for R134a, R407C or R410A.
(5)	Adaptor for reverse flow check	- Attach on vacuum pump.
(6)	Refrigerant charge base	-
(7)	Refrigerant cylinder	- Only for R410A • Top of cylinder (Pink) - Cylinder with syphon
(8)	Refrigerant recovery equipment	-

1-2. PRECAUTIONS FOR SALT PROOF TYPE "-BS" MODEL

Although "-BS" model has been designed to be resistant to salt damage, observe the following precautions to maintain the performance of the unit.
(1) Avoid installing the unit in a location where it will be exposed directly to seawater or sea breeze.
(2) If the cover panel may become covered with salt, be sure to install the unit in a location where the salt will be washed away by rainwater. (If a sunshade is installed, rainwater may not clean the panel.)
(3) To ensure that water does not collect in the base of the outdoor unit, make sure that the base is level, not at angle. Water collecting in the base of the outdoor unit could cause rust.
(4) If the unit is installed in a coastal area, clean the unit with water regularly to remove any salt build-up.
(5) If the unit is damaged during installation or maintenance, be sure to repair it.
(6) Be sure to check the condition of the unit regularly.
(7) Be sure to install the unit in a location with good drainage.

Cautions for refrigerant piping work

New refrigerant R410A is adopted for replacement inverter series. Although the refrigerant piping work for R410A is same as for R22, exclusive tools are necessary so as not to mix with different kind of refrigerant. Furthermore as the working pressure of R410A is 1.6 times higher than that of R22, their sizes of flared sections and flare nuts are different.
(1) Thickness of pipes

Because the working pressure of R410A is higher compared to R22, be sure to use refrigerant piping with thickness shown below. (Never use pipes of $7 / 256$ in [0.7 mm] or below.)

Diagram below: Piping diameter and thickness

Nominal dimensions (in)	Outside diameter (mm)	Thickness : in [mm]	
		$1 / 32[0.8]$	R22
$3 / 8$	9.52	$1 / 32[0.8]$	$1 / 32[0.8]$
$1 / 2$	12.70	$1 / 32[0.8]$	$1 / 32[0.8]$
$5 / 8$	15.88	$5 / 128[1.0]$	$5 / 128[1.0]$
$3 / 4$	19.05	-	$5 / 128[1.0]$

Dimensions of flare cutting and flare nut
The component molecules in HFC refrigerant are smaller compared to conventional refrigerants. In addition to that, R410A is a refrigerant, which has higher risk of leakage because its working pressure is higher than that of other refrigerants.
Therefore, to enhance airtightness and intensity, flare cutting dimension of copper pipe for R410A has been specified separately from the dimensions for other refrigerants as shown below. The dimension B of flare nut for R410A also has partly been changed to increase intensity as shown below. Set copper pipe correctly referring to copper pipe flaring dimensions for R410A below. For $1 / 2$ and $5 / 8$ inch, the dimension B changes.
Use torque wrench corresponding to each dimension.

Dimension B

Flare cutting dimensions
Nominal dimensions (in) Outside diameter (mm) Unit : in $[\mathrm{mm}]$ R410A R22 $1 / 4$ 6.35 $11 / 32-23 / 64[9.1]$ 9.0 $3 / 8$ 9.52 $1 / 2-33 / 64$ $[13.2]$ 13.0
$1 / 2$

Flare nut dimensions

Nominal	Outside	Unit: in [mm]	
	diameter (mm)	R410A	R22
$1 / 4$	6.35	$43 / 64[17.0]$	17.0
$3 / 8$	9.52	$7 / 8[22.0]$	22.0
$1 / 2$	12.70	$1-3 / 64[26.0]$	24.0
$5 / 8$	15.88	$1-9 / 64[29.0]$	27.0
$3 / 4$	19.05	-	36.0

(3) Tools for R410A (The following table shows whether conventional tools can be used or not.)

Tools and materials	Use	R410A tools	Can R22 tools be used?	Can R407C tools be used?
Gauge manifold	Air purge, refrigerant charge and operation check	Tool exclusive for R410A	\times	\times
Charge hose		Tool exclusive for R410A	\times	\times
Gas leak detector	Gas leak check	Tool for HFC refrigerant	\times	\bigcirc
Refrigerant recovery equipment	Refrigerant recovery	Tool exclusive for R410A	\times	\times
Refrigerant cylinder	Refrigerant charge	Tool exclusive for R410A	\times	\times
Applied oil	Apply to flared section	Ester oil, ether oil and alkylbenzene oil (minimum amount)	\times	Ester oil, ether oil: \bigcirc Alkylbenzene oil: minimum amount
Safety charger	Prevent compressor malfunction when charging refrigerant by spraying liquid refrigerant	Tool exclusive for R410A	\times	\times
Charge valve	Prevent gas from blowing out when detaching charge hose	Tool exclusive for R410A	\times	\times
Vacuum pump	Vacuum drying and air purge	Tools for other refrigerants can be used if equipped with adopter for reverse flow check	\triangle (Usable if equipped with adopter for reverse flow)	Δ (Usable if equipped with adopter for reverse flow)
Flare tool	Flaring work of piping	Tools for other refrigerants can be used by adjusting flaring dimension	Δ (Usable by adjusting flaring dimension)	\triangle (Usable by adjusting flaring dimension)
Bender	Bend the pipes	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Pipe cutter	Cut the pipes	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Welder and nitrogen gas cylinder	Weld the pipes	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Refrigerant charging scale	Refrigerant charge	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Vacuum gauge or thermistor vacuum gauge and vacuum valve	Check the degree of vacuum. (Vacuum valve prevents back flow of oil and refrigerant to thermistor vacuum gauge)	Tools for other refrigerants can be used	\bigcirc	\bigcirc
Charging cylinder	Refrigerant charge	Tool exclusive for R410A	\times	-

\times : Prepare a new tool. (Use the new tool as the tool exclusive for R410A.)
Δ : Tools for other refrigerants can be used under certain conditions.
\bigcirc : Tools for other refrigerants can be used.

2-1. Auxiliary HEATING ON/OFF CONTROL SET-UP

(1) Auxiliary heating operation controls another heat source that depends on the main system's operations, which means the interlock operation shown in "b)" will be possible.
a) Indoor unit must be R410A UL model for this function to operate.
b) Different Indoor unit applications that can be applied:

(2) Outdoor unit DIPSW5-4 for auxiliary heating control:

Set DIPSW5-4 when power is turned off at unit.
OFF: Disable auxiliary Heating Function (Initial setting)
ON : Enable auxiliary Heating Function
(3) Determine required indoor fans speed during defrost mode:

To set the fan speed, see the chapter referring to heater control in the indoor unit's Technical \& Service Manual.
(4) Determine fan airflow setting during indoor thermo-OFF conditions:
a) These settings are done within Indoor DIPSW1-7 and DIPSW1-8, see chart below for options.
b) Recommended SW1-7 OFF and SW1-8 ON will determine airflow based on "Setting on the remote controller".

(5) Setting outdoor unit and auxiliary heat switch over temperatures.

When the DIPSW 5-4 is set to "ON", the outdoor unit and the contact output operates as shown below.
a) Outdoor default setting and operations are shown below:

When the set temperature ranges overlap, the previously set pattern (1,2 or 3) has a priority.
The stage 1 has the highest priority, 2 the second and then 3.
b) Based on above chart listed the sequence of operation on "On ambient decrease"
(Stage $1:\left(\mathrm{TH} 7=>50^{\circ} \mathrm{F}\left[10^{\circ} \mathrm{C}\right]\right)$: the outdoor unit runs in HP mode.
Stage 2 :(TH7 $=50$ to $-13^{\circ} \mathrm{F}\left[10\right.$ to $\left.\left.-25^{\circ} \mathrm{C}\right]\right)$: the outdoor unit runs in HP mode with auxiliary heating.
Stage 3 :(TH7 = <-13 ${ }^{\circ} \mathrm{F}\left[-25^{\circ} \mathrm{C}\right]$) : Auxiliary heating only (Outdoor unit is OFF).
c) Based on above chart listed the sequence of operation on "On ambient increase"

$$
\left(\begin{array}{l}
\text { Stage } 3:\left(\mathrm{TH} 7=<32^{\circ} \mathrm{F}\left[0^{\circ} \mathrm{C}\right]\right): \text { Auxiliary heating only (Outdoor unit is OFF). } \\
\text { Stage } 2:\left(\mathrm{TH} 7=>32 \text { to } 68^{\circ} \mathrm{F}\left[0 \text { to } 20^{\circ} \mathrm{C}\right]\right) \text { : Auxiliary heating with outdoor unit in HP mode. } \\
\text { Stage } 1:\left(\mathrm{TH} 7=>68^{\circ} \mathrm{F}\left[20^{\circ} \mathrm{C}\right]\right): \text { Outdoor unit in HP mode only. }
\end{array}\right.
$$

(6) Locally procured wiring

A basic connection method is shown.
(i.e. interlocked operation with the electric heater with the fan speed setting on high)

For relay X use the specifications given below operation coil
Rated voltage : 12 V DC
Power consumption :0.9W or less
*Use the diode that is recommended by the relay manufacturer at both ends of the relay coil.
The length of the electrical wiring for the PAC-YU24HT is 2 meters ($6-1 / 2 \mathrm{ft}$)
To extend this length, use sheathed 2-core cable.
Control cable type : CVV, CVS, CPEV, or equivalent.
Cable size : $0.5 \mathrm{~mm}^{2}$ to $1.25 \mathrm{~mm}^{2}$ (AWG22 to AWG16)
Do not extend the cable more than 10 meters (32 ft).
Recommended circuit

1-phase power
supply
$208 \mathrm{~V}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$

FS1, 2 ----- Thermal fuse
H1, H2 ----- Heater
26 H ---------- Overheat protection thermostat
88H --------- Electromagnetic contactor

2-2. UNIT CONSTRUCTION

2-3. UNIT SPECIFICATIONS

(1) Outdoor Unit

Service Ref.		PUMY-P60NKMU1 PUMY-P60NKMU1-BS
Capacity	Cooling (kBTU/h)	60.0
	Heating (kBTU/h)	66.0
Compressor (kW)	4.1	

Cooling/Heating capacity indicates the maximum value at operation under the following condition.
 Outdoor D.B. $47^{\circ} \mathrm{F} / \mathrm{W} . \mathrm{B} .43^{\circ} \mathrm{F}$: [D.B. $8.3^{\circ} \mathrm{C} /$ W.B. $6.1^{\circ} \mathrm{C}$]
(2) Method for identifying MULTI-S model - Outdoor unit

(3) Operating temperature range

	Cooling	Heating
Indoor-side intake air temperature	59 to $75^{\circ} \mathrm{F}$ [W.B. 15 to $\left.24^{\circ} \mathrm{C}\right]$	59 to $81^{\circ} \mathrm{F}$ [D.B. 15 to $\left.27^{\circ} \mathrm{C}\right]$
Outdoor-side intake air temperature	23 to $115^{\circ} \mathrm{F}\left[\text { D.B. }-5 \text { to } 46^{\circ} \mathrm{C}\right]^{*} 1^{*} 2$	-13 to $59^{\circ} \mathrm{F}\left[\right.$ W.B. -25 to $\left.15^{\circ} \mathrm{C}\right]$

Notes: D.B. : Dry Bulb Temperature
W.B. : Wet Bulb Temperature
${ }^{* 1} 50$ to $115{ }^{\circ} \mathrm{F}$ [10 to $46^{\circ} \mathrm{C}$] D.B. : When connecting PKFY-P06NBMU, PKFY-P08NHMU type indoor unit.
*2 5 to $115^{\circ} \mathrm{F}$ [-15 to $46^{\circ} \mathrm{C}$] D.B.: When using an optional air protect guide [PAC-SH95AG-E].
However, this condition does not apply to the indoor units listed in *1.

3 SPECIFICATIONS

4-1. SELECTION OF COOLING/HEATING UNITS

How to determine the capacity when less than or equal 100% indoor model size units are connected in total:
The purpose of this flow chart is to select the indoor and outdoor units. For other purposes, this flow chart is intended only for reference.

How to determine the capacity when greater than 100% indoor model size units are connected in total:
The purpose of this flow chart is to select the indoor and outdoor units. For other purposes, this flow chart is intended only for reference.

<Cooling>

Design Condition	
Outdoor Design Dry Bulb Temperature	98.6 ${ }^{\circ} \mathrm{F}\left(37.0^{\circ} \mathrm{C}\right.$)
Total Cooling Load	54.0 kBTU/h
Room1	
Indoor Design Dry Bulb Temperature	$80.6{ }^{\circ} \mathrm{F}\left(27.0^{\circ} \mathrm{C}\right)$
Indoor Design Wet Bulb Temperature	$68.0{ }^{\circ} \mathrm{F}\left(20.0^{\circ} \mathrm{C}\right)$
Cooling Load	26.0 kBTU/h
Room2	
Indoor Design Dry Bulb Temperature	$75.2{ }^{\circ} \mathrm{F}\left(24.0{ }^{\circ} \mathrm{C}\right.$)
Indoor Design Wet Bulb Temperature	$66.2{ }^{\circ} \mathrm{F}\left(19.0^{\circ} \mathrm{C}\right.$)
Cooling Load	28.0 kBTU/h
<Other>	
Indoor/Outdoor Equivalent Piping Length	100 ft

Capacity of indoor unit

Model Number for indoor unit	Model 06	Model 08	Model 12	Model 15	Model 18	Model 24	Model 27	Model 30	Model 36	Model 48	Model 54	Model 72
Model Capacity	6.0	8.0	12.0	15.0	18.0	24.0	27.0	30.0	36.0	48.0	54.0	72.0

1. Cooling Calculation

(1) Temporary Selection of Indoor Units

Room1
PEFY-P27
Room2
PEFY-P30
(2) Total Indoor Units Capacity
$\mathrm{P} 27+\mathrm{P} 30=\mathrm{P} 57$
(3) Selection of Outdoor Unit

The P60 outdoor unit is selected as total indoor units capacity is P57 PUMY-P60
(4) Total Indoor Units Capacity Correction Calculation Room1

Indoor Design Wet Bulb Temperature Correction (68.0oF)
Room2
Indoor Design Wet Bulb Temperature Correction (66.2º F)
Total Indoor Units Capacity (CTi)
60.0 kBTU/h
0.95 (Refer to Figure 1)

Figure 1 Indoor unit temperature correction To be used to correct indoor unit only

Figure 3 Correction of refrigerant piping length
1.02 (Refer to Figure 1)
0.98 (Refer to Figure 2) 0.96 (Refer to Figure 3)
(6) Determination of Maximum System Capacity

CTi $=\Sigma$ (Indoor Unit Rating \times Indoor Design Temperature Correction) $=27.0 \times 1.02+30.0 \times 0.95$ $=56.0 \mathrm{kBTU} / \mathrm{h}$
(5) Outdoor Unit Correction Calculation

Outdoor Design Dry Bulb Temperature Correction (98.6ㅇ)
Piping Length Correction (100 ft)
Total Outdoor Unit Capacity (CTo)
CTo $=$ Outdoor Rating \times Outdoor Design Temperature Correction \times Piping Length Correction $=60.0 \times 0.98 \times 0.96$
$=56.4 \mathrm{kBTU} / \mathrm{h}$
Comparison of Capacity between Total Indoor Units Capacity (CTi) and Total Outdoor Unit Capacity (CTo)
$\mathrm{CTi}=56.0<\mathrm{CTo}=56.4$, thus, select CTi. $\mathrm{CTx}=\mathrm{CTi}=56.0 \mathrm{kBTU} / \mathrm{h}$
(7) Comparison with Essential Load

Against the essential load $54.0 \mathrm{kBTU} / \mathrm{h}$, the maximum system capacity is $56.0 \mathrm{kBTU} / \mathrm{h}$: Proper outdoor units have been selected.
(8) Calculation of Maximum Indoor Unit Capacity of Each Room $\mathrm{CTx}=\mathrm{CTi}$, thus, calculate by the calculation below
Room1
Indoor Unit Rating \times Indoor Design Temperature Correction

$$
\begin{aligned}
& =27.0 \times 1.02 \\
& =27.5 \mathrm{kBTU} / \mathrm{h}
\end{aligned}
$$

OK: fulfills the load 26.0 kBTU/h
Room2
Indoor Unit Rating \times Indoor Design Temperature Correction
$=30.0 \times 0.95$
$=28.5 \mathrm{kBTU} / \mathrm{h}$
OK: fulfills the load 28.0 kBTU/h
Go on to the heating trial calculation since the selected units fulfill the cooling loads of Room 1, 2.

<Heating>

Design Condition	
Outdoor Design Wet Bulb Temperature	35.6.F (2.0 ${ }^{\circ} \mathrm{C}$)
Total Heating Load	55.0 kBTU/h
Room1	
Indoor Design Dry Bulb Temperature	69.8ㅇF (21.0으)
Heating Load	26.5 kBTU/h
Room2	
Indoor Design Dry Bulb Temperature	73.4${ }^{\circ} \mathrm{F}\left(23.0{ }^{\circ} \mathrm{C}\right)$
Heating Load	28.5 kBTU/h
<Other>	
Indoor/Outdoor Equivalent Piping Length	100 ft

Capacity of indoor unit

Model Number for indoor unit	Model 06	Model 08	Model 12	Model 15	Model 18	Model 24	Model 27	Model 30	Model 36	Model 48	Model 54	Model 72
Model Capacity	6.7	9.0	13.5	17.0	20.0	27.0	30.0	34.0	40.0	54.0	60.0	80.0

2. Heating Calculation
(1) Temporary Selection of Indoor Units

Room1
PEFY-P27
Room2
PEFY-P30
(2) Total Indoor Units Capacity

P27 + P30 = P57
(3) Selection of Outdoor Unit

The P60 outdoor unit is selected as total indoor units capacity is P57 PUMY-P60
(4) Total Indoor Units Capacity Correction Calculation Room1
Indoor Design Dry Bulb Temperature Correction (69.8우)
Room2
Indoor Design Dry Bulb Temperature Correction (73.4ํF)
Total Indoor Units Capacity (CTi)
1.00 (Refer to Figure 4)
0.92 (Refer to Figure 4)

Figure 4 Indoor unit temperature correction To be used to correct indoor unit only

Figure 5 Outdoor unit temperature correction To be used to correct outdoor unit only
$\mathrm{CTi}=\Sigma$ (Indoor Unit Rating \times Indoor Design Temperature Correction) $=30.0 \times 1.00+34.0 \times 0.92$ $=61.3 \mathrm{kBTU} / \mathrm{h}$
(5) Outdoor Unit Correction Calculation

Outdoor Design Wet Bulb Temperature Correction (35.6º ${ }^{\circ}$)
Piping Length Correction (100 ft)
Defrost Correction
Total Outdoor Unit Capacity (CTo)
CTo $=$ Outdoor Unit Rating \times Outdoor Design Temperature Correction \times Piping Length Correction \times Defrost Correction
$=66.0 \times 1.0 \times 0.96 \times 0.89$
$=56.4 \mathrm{kBTU} / \mathrm{h}$
1.0 (Refer to Figure 5) 0.96 (Refer to Figure 6) 0.89 (Refer to Table 1)

Figure 6 Correction of refrigerant piping length

Outdoor Intake temperature $\left\langle W . B .{ }^{\circ}{ }^{\circ}\left({ }^{\circ} \mathrm{C}\right)>\right.$	$43(6)$	$39(4)$	$36(2)$	$32(0)$	$28(-2)$	$25(-4)$	$21(-6)$	$18(-8)$	$14(-10)$	$5(-15)$	$-4(-20)$	$-13(-20)$
Correction factor	1.0	0.98	0.89	0.88	0.89	0.9	0.95	0.95	0.95	0.95	0.95	0.95

(6) Determination of Maximum System Capacity

Comparison of Capacity between Total Indoor Units Capacity (CTi) and Total Outdoor Unit Capacity (CTo)
$\mathrm{CTi}=61.3>\mathrm{CTo}=56.4$, thus, select CTo.
$\mathrm{CTx}=\mathrm{CTo}=56.4 \mathrm{kBTU} / \mathrm{h} \mathrm{kW}$
(7) Comparison with Essential Load

Against the essential load $55.0 \mathrm{kBTU} / \mathrm{h}$, the maximum system capacity is $56.4 \mathrm{kBTU} / \mathrm{h}$: Proper outdoor units have been selected.
(8) Calculation of Maximum Indoor Unit Capacity of Each Room

CTx = CTo, thus, calculate by the calculation below
Room1
Maximum Capacity \times Room1 Capacity after the Temperature Correction/(Room1,2 Total Capacity after the Temperature Correction $=56.4 \times(30.0 \times 1.00) /(30.0 \times 1.00+34.0 \times 0.92)$
$=27.6 \mathrm{kBTU} / \mathrm{h} \quad$ OK: fulfills the load $26.5 \mathrm{kBTU} / \mathrm{h}$
Room2
Maximum Capacity \times Room2 Capacity after the Temperature Correction/(Room1,2 Total Capacity after the Temperature Correction)
$=56.4 \times(34.0 \times 0.92) /(30.0 \times 1.00+34.0 \times 0.92)$
$=28.8 \mathrm{kBTU} / \mathrm{h}$
OK: fulfills the load 28.5 kBTU/h
Completed selecting units since the selected units fulfill the heating loads of Room 1, 2.
3. Power input of outdoor unit

Outdoor unit : PUMY-P60
Indoor unit 1 : PEFY-P27
Indoor unit 2 : PEFY-P30
<Cooling>
(1) Rated power input of outdoor unit
4.68 kW
(2) Calculation of the average indoor temperature power input coefficient

Average indoor temp. power input coefficient $\left(C_{\text {ave }}\right)=\sum_{k=1}^{n}\left\{c_{k} \times\left(M_{k} / \sum_{k=1}^{n} M_{k}\right)\right\}$
n : Total number of the indoor units
k: Number of the indoor unit
c_{k} : Outdoor unit power input coefficient of k indoor unit room temp.
M_{k} : Number part of the k indoor unit model (e.g. P80 $\rightarrow 80$)
$=1.04 \times 27 /(27+30)+0.85 \times 30 /(27+30)$
$=0.94$
(3) Coefficient of the partial load f (CTi)

Total Indoor units capacity
$27+30=57$, thus, $\boldsymbol{f}(\mathrm{CTi})=0.95$ (Refer to the tables in "4-4.STANDARD CAPACITY DIAGRAM".)
(4) Outdoor power input (Plo)

Maximum System Capacity (CTx) = Total Outdoor unit Capacity (CTo), so use the following formula
Plo $=$ Outdoor unit Cooling Rated Power Input \times Correction Coefficient of Indoor temperature $\times \boldsymbol{f}(\mathrm{CTi})$
$=4.68 \times 0.94 \times 0.95$
$=4.18 \mathrm{~kW}$
(1) Rated power input of outdoor unit
(2) Calculation of the average indoor temperature power input coefficient

Average indoor temp. power input coefficient $\left(C_{\text {ave }}\right)=\sum_{k=1}^{n}\left\{c_{k} \times\left(M_{k} / \sum_{k=1}^{n} M_{k}\right)\right\}$
n : Total number of the indoor units
k: Number of the indoor unit
c_{k} : Outdoor unit power input coefficient of k indoor unit room temp
M_{k} : Number part of the k indoor unit model (e.g. $\mathrm{P} 80 \rightarrow 80$)
$=1.16 \times 27 /(27+30)+1.09 \times 27 /(27+30)$
$=1.07$
(3) Coefficient of the partial load $f(\mathrm{CTi})$

Total indoor units capacity
$27+30=57$, thus, $\boldsymbol{f}(\mathrm{CTi})=0.95$ (Refer to the tables in "4-4. STANDARD CAPACITY TEMPERATURE".)
(4) Outdoor power input (Plo)

Maximum System Capacity (CTx) = Total Indoor unit Capacity (CTi), so use the following formula
Plo $=$ Outdoor unit Heating Rated Power Input \times Correction Coefficient of Indoor temperature $\times \boldsymbol{f}(\mathrm{CTi})$ $=5.45 \times 1.07 \times 0.95$
$=5.54 \mathrm{~kW}$

4-2. CORRECTION BY TEMPERATURE

CITY MULTI could have varied capacity at different designing temperature. Using the nominal cooling/heating capacity value and the ratio below, the capacity can be observed at various temperature.
<Cooling>
Figure 7 Indoor unit temperature correction To be used to correct indoor unit capacity only

		PUMY
	P60	
Nominal cooling capacity	BTU/h	60,000
Input	kW	4.68

Figure 8 Outdoor unit temperature correction To be used to correct outdoor unit capacity only

<Heating>

		PUMY
	P60	
Nominal heating capacity	BTU/h	66,000
Input	kW	5.45

Figure 9 Indoor unit temperature correction To be used to correct indoor unit capacity only

Figure 10 Outdoor unit temperature correction To be used to correct outdoor unit capacity only

4-3. STANDARD OPERATION DATA (REFERENCE DATA)

Operation				PUMY-P60NKMU1 PUMY-P60NKMU1-BS	
Operating conditions	Ambient temperature	Indoor	DB/WB	$\begin{gathered} 80^{\circ} \mathrm{F} / 67^{\circ} \mathrm{F} \\ {\left[26.7^{\circ} \mathrm{C} / 19.4^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} 70^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F} \\ {\left[21.1^{\circ} \mathrm{C} / 15.6^{\circ} \mathrm{C}\right]} \end{gathered}$
		Outdoor		$\begin{gathered} 95^{\circ} \mathrm{F} / 75^{\circ} \mathrm{F} \\ {\left[35.0^{\circ} \mathrm{C} / 23.9^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} 47^{\circ} \mathrm{F} / 43^{\circ} \mathrm{F} \\ {\left[8.3^{\circ} \mathrm{C} / 6.1 \mathrm{v}\right]} \end{gathered}$
	Indoor unit	No. of connected units	Unit	4	
		No. of units in operation		4	
		Model	-	15×4	
	Piping	Main pipe	Ft (m)	9.84 (3)	
		Branch pipe		14.76 (4.5)	
		Total pipe length		68.90 (21)	
	Fan speed		-	Hi	
	Amount of refrigerant		LBS. OZ. (kg)	19LBS. 6OZ. (8.8)	
Outdoor unit	Electric current		A	20.6	24.1
	Voltage		V	230	
	Compressor frequency		Hz	42	52
LEV opening	Indoor unit		Pulse	389	498
Pressure	High pressure/Low pressure		PSIG [MPaG]	342/136 [2.36/0.94]	425/97 [2.93/0.67]
Temp. of each section	Outdoor unit	Discharge	${ }^{\circ} \mathrm{F}\left[{ }^{\circ} \mathrm{C}\right]$	136.8 [58.2]	154.4 [68.0]
		Heat exchanger outlet		90.0 [32.2]	33.1 [0.6]
		Accumulator inlet		55.4 [13.0]	32.2 [0.1]
		Compressor inlet		57.2 [14.0]	30.9 [-0.6]
	Indoor unit	Lev inlet		80.6 [27.0]	104.0 [40.0]
		Heat exchanger inlet		50.0 [10.0]	141.8 [61.0]

4-4. STANDARD CAPACITY DIAGRAM

Before calculating the sum of total capacity of indoor units, please convert the value into the kW model capacity following the formula on "4-1-1. Method for obtaining system cooling and heating capacity".

4-4-1. PUMY-P60NKMU1(-BS) <cooling>

		PUMY
		P60
Nominal cooling capacity	BTU/h	60,000
Input	kW	4.68
Current (208V)	A	22.8
Current (230V)	A	20.6

4-4-2. PUMY-P60NKMU1(-BS) <heating>

		PUMY
		P60
Nominal cooling capacity	BTU/h	66,000
Input	kW	5.67
Current (208V)	A	28.5
Current (230V)	A	25.7

208, 230 V

4-5. CORRECTING CAPACITY FOR CHANGES IN THE LENGTH OF REFRIGERANT PIPING
(1) During cooling, obtain the ratio (and the equivalent piping length) of the outdoor units rated capacity and the total in-use indoor capacity, and find the capacity ratio corresponding to the standard piping length from Figure 11 to 13 . Then multiply by the cooling capacity from Figure 7 and 8 in "4-2. CORRECTION BY TEMPERATURE" to obtain the actual capacity.
(2) During heating, find the equivalent piping length, and find the capacity ratio corresponding to standard piping length from Figure 12.

Then multiply by the heating capacity from Figure 9 and 10 in "4-2. CORRECTION BY TEMPERATURE" to obtain the actual capacity.
(1) Capacity Correction Curve

Figure 11 PUMY-P60NKMU1(-BS) <Cooling>

Figure 12 PUMY-P60NKMU1(-BS) <Heating>

(2) Method for Obtaining the Equivalent Piping Length

Equivalent length for type P60 $=$ (length of piping to farthest indoor unit) $+(0.3 \times$ number of bends in the piping) (m)
Length of piping to farthest indoor unit: type P60..... 80 m

4-5-1. Correction of Heating Capacity for Frost and Defrosting

If heating capacity has been reduced due to frost formation or defrosting, multiply the capacity by the appropriate correction factor from the following table to obtain the actual heating capacity.

Correction factor diagram

Outdoor Intake temperature <W.B. ${ }^{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)>$	$43(6)$	$39(4)$	$36(2)$	$32(0)$	$28(-2)$	$25(-4)$	$21(-6)$	$18(-8)$	$14(-10)$	$5(-15)$	$-4(-20)$	$-13(-25)$
Correction factor	1.0	0.98	0.89	0.88	0.89	0.9	0.95	0.95	0.95	0.95	0.95	0.95

4-6. NOISE CRITERION CURVES

PUMY-P60NKMU1

SYMBOL	NAME
TB1	Terminal Block <Power Supply>
TB3	Terminal Block <Indoor/Outdoor Transmission Line>
TB7	Terminal Block <Centralized Control Transmission Line>
MC	Motor For Compressor
MF1,MF2	Fan Motor
S4	Solenoid Valve Coil<4-Way Valve>
63 H	High Pressure Switch
63HS	High Pressure Sensor
63LS	Low Pressure Sensor
SV1	Solenoid Valve Coil<Bypass Valve>
H2	Thermistor<Hic Pipe>
TH3	Thermistor<Outdoor Liquid Pipe>
TH4	Thermistor<Compressor>
TH6	Thermistor<Suction Pipe>
TH7	Thermistor<Ambient>
TH8	Thermistor<Heat Sink>
LEV-A,LEV-B	Linear Expansion Valve
DCL	Reactor
P.B.	Power Circuit Board
U/V/W	Connection Terminal<U/V/W-Phase
LI	Connection Terminal<L-Phase>
NI	Connection Terminal<N-Phase>
DCL1,DCL2	Connection Terminal<Reactor>
IGBT	Power Module
EI,E2,E3,E4	ConnectionTerminal<Electrical Parts Box
MULTI.B.	Multi Controller Circuit Board
SW1	Switch<Display Selection>
SW2	Switch<Function Selection>
SW3	Switch<Test Run>
SW4	Switch<Model Selection>
SW5	Switch<Function Selection>
SW6	Switch<Function Selection>
SW7	Switch<Function Selection>
SW8	Switch<Model Selection>
SW9	Switch<Function Selection>
SWU1	Switch<Unit Address Selection, ones digitz
SWU2	Switch<Unit Address Selection, tens digit>
CNS1	Connector <Indoor/Outdoor Transmission Line>
CNS2	ConnectorCentaraized Control Transmission Line>
SS	Connector<Connection For Option>
CN3D	Connector<Connection For Option>
CN3S	Connector<Connection For Option>
CN3N	Connector<Connection For Option>
CN51	Connector<Connection For Option>
LED1,LED2	LED<Operation Inspection Display>
LED3	LED<Power Supply to Main Microcomputer>
F1,F2	Fuse<UL6.3A250V>
X501~505	Relay
M-NET P.B.	M-NET Power Circuit Board
TB1	ConnectionTerminal<Electrical Parts Box>

Cautions when Servicing

- \triangle WARNING: When the main supply is turned off, the voltage $[340 \mathrm{~V}]$ in the main capacitor will drop to 20 V in approx. 2 minutes (input voltage: 230 V). When servicing, make sure that LED1, LED2 on the outdoor multi controller circuit board goes out, and then wait for at least 1 minute.
- Components other than the outdoor circuit boards may be faulty: Check and take corrective action, referring to the service manual. Do not replace the outdoor circuit boards without checking.
Précautions pendant l'entretien
- $\$ AVERTISSEMENT : lorsque l'alimentation principale est hors tension, la tension [340 V] dans le condensateur principal chute à 20 V en 2 minutes environ (tension d'entrée : 230 V). Lors de l'entretien, assurez-vous que la diode LED1, LED2 sur la carte de circuit exterieure s'eteint, puis patientez au moins 1 minute.
- Des composants autres que la carte de circuit extérieure peuvent être défectueux : vérifiez et prenez des mesures de correction, en vous reportant au manuel d'entretien.
Ne remplacez pas la carte de circuit extérieure sans vérification.
NOTES:

1. Refer to the wiring diagrams of the indoor units for details on wiring of each indoor unit.
2.Self-diagnosis function

The indoor and outdoor units can be diagnosed automatically using the self-diagnosis switch
(SW1) and LED indication (LED1, LED2) found on the outdoor multi controller circuit board.
LED indication : Set all contacts of SW1 to OFF.

- During normal operation
The LED indicates the drive state of outdoor unit.

Bit	1	2	3	4	5	6	7	8
Indication	Compressor operated	52 C	21 S 4	SV1	$(\mathrm{SV} 2)$	-	-	Always lit

- When fault requiring inspection has occurred

The LED alternately indicates the check code and the address of the unit in which the fault has occurred.
*1 MODEL SELECTION
 Use copper supply wires.
Utilisez des fils d' slimentation en cuivre.

7-1. TRANSMISSION SYSTEM SETUP

7-2. Special Function Operation and Settings for M-NET Remote Controller

For the detailed procedure of "group settings" and "paired settings", refer to the remote controller's manuals.

7-3. REFRIGERANT SYSTEM DIAGRAM

PUMY-P60NKMU1 PUMY-P60NKMU1-BS

Capillary tube for solenoid valve : $\phi 4.0 \times \phi 3.0 \times$ L500

Refrigerant piping specifications <dimensions of flared connector>
Unit: in <mm>

\left.| Capacity | | Ltem | Giquid piping |
| :--- | :--- | :--- | :---: |$\right]$

7-4. SYSTEM CONTROL

7-4-1. Example for the System

- Example for wiring control cables, wiring method and address setting, permissible lengths, and the prohibited items are listed in the standard system with detailed explanation.
A. Example of a M-NET remote controller system (address setting is necessary.)

- Name, Symbol and the Maximum Remote controller Units for Connection

Name	Symbol	Maximum units for connection
Outdoor unit	OC	-
M-NET control Indoor unit	M-IC	1 OC unit can be connected to 1 to 12 (P60) M-IC units
M-NET remote controller	M-NET RC	Maximum 2 M-NET RC for 1 indoor unit, Maximum 12 M-NET RC for 1 OC

Permissible Lengths	Prohibited items
Longest transmission cable length AWG 16 [1.25 mm²] $\mathrm{L} 1+\mathrm{L} 2, \mathrm{~L} 3+\mathrm{L} 1 \leqq 656 \mathrm{~A}[200 \mathrm{~m}]$ M-NET Remote controller cable length 1. If AWB 20 to AWG 16 [0.5 to $1.25 \mathrm{~mm}^{2}$] $\ell 1, \ell 2 \leqq 33 \mathrm{ft}[10 \mathrm{~m}]$ 2. If the length exceeds 33 ft [10 $\mathrm{m}]$, the exceeding section should be AWG 16 [1.25 mm²] and that section should be a value within the total extension length of the transmission cable and maximum transmission cable length. (L3)	- M-NET remote controller (M-NET RC) and MA remote controller (MA RC) cannot be used together. - Do not connect anything with TB15 of M-NET control indoor unit (M-IC).
Same as above	(1) Use the M-NET control indoor unit (M-IC) address plus 150 as the sub M-NET remote controller address. In this case, it should be 152. (2) 3 or more M-NET remote controllers (M-NET RC) cannot be connected to 1 M-NET control indoor unit.
Same as above	(1) The M-NET remote controller address is the M-NET control indoor unit main address plus 100. In this case, it should be 101.

B. Example of a group operation system with 2 or more outdoor units and a M-NET remote controller.
(Address settings are necessary.)

a. Always use shielded wire when making connections between the outdoor unit (OC) and the M-NET control indoor unit (M-IC), as well for all OC-OC, and IC-IC wiring intervals.
b. Use feed wiring to connect terminals M1 and M2 and the ground terminal on the transmission cable terminal block (TB3) of each outdoor unit (OC) to terminals M1 and M2 on the terminal S on the transmission cable terminal block of the M-NET control indoor unit (M-IC).
c. Connect terminals M1 and M2 on the transmission cable terminal block of the M-NET control indoor unit (M-IC) that has the most recent address within the same group to the terminal block on the M-NET remote controller (M-NET RC).
d. Connect together terminals M1, M2 and terminal S on the terminal block for centralized control (TB7) for the outdoor unit (OC).
e. DO NOT change the jumper connector CN41 on outdoor multi controller circuit board.
f. The earth processing of S terminal for the centralized control terminal block (TB7) is unnecessary. Connect the terminal S on the power supply unit with the earth.
g. Set the address setting switch as follows.

Unit	Range	Setting Method
M-IC (Main)	01 to 50	Use the smallest address within the same group of M-NET control indoor units.
M-IC (Sub)	01 to 50	Use an address, other than the M-IC (Main) in the same group of M-NET control indoor units. This must be in sequence with the M-IC (Main).
Outdoor Unit	51 to 100	Use the smallest address of all the M-NET control indoor units plus 50. The address automatically becomes "100" if it is set as "01-50".
Main M-NET Remote Controller	101 to 150	Set at an M-IC (Main) address within the same group plus 100.
Sub M-NET Remote Controller	151 to 200	Set at an M-IC (Main) address within the same group plus 150.
MA Remote Controller	-	Address setting is not necessary. (Main/sub setting is necessary.)

h. The group setting operations among the multiple M-NET control indoor units is done by the M-NET remote controller (M-NET RC) after the electrical power has been turned on.

- Name, Symbol, and the Maximum Units for Connection

C. Example of a controller system (address setting is not necessary.)

NOTE : In the case of same group operation, need to set the address that is only main M-NET control indoor unit.

Example of wiring control cables	Wiring Method and Address Setting
1. Standard operation	a. Use feed wiring to connect terminals M1 and M2 on transmission cable block (TB3) for the outdoor unit (OC) to terminals M1 and M2 on the transmission cable block (TB5) of each M-NET control indoor unit (M-IC). Use non-polarized 2-core wire. b. Connect terminals 1 and 2 on transmission cable terminal block (TB15) for each M-NET control indoor unit with the terminal block for the MA remote controller (MA-RC).
2. Operation using two remote controllers	a. The same as above a b. The same as above b c. In the case of using 2 remote controllers, connect terminals 1 and 2 on transmission cable terminal block (TB15) for each indoor unit with the terminal block for 2 MA remote controllers. - Set either one of the controllers to "sub remote controller". Refer to the installation manual of MA remote controller.
3. Group operation	a. The same as above a b. The same as above b c. Connect terminals 1 and 2 on transmission cable terminal block (TB15) of each M-NET control indoor unit, which is doing group operation with the terminal block the MA remote controller. Use non-polarized 2-core wire. d. In the case of same group operation, need to set the address that is only main M-NET control indoor unit. Please set the smallest address within number $01-50$ of the M-NET control indoor unit with the most functions in the same group.

D. Example of a group operation with 2 or more outdoor units and a MA remote controller.
(Address settings are necessary.)

a. Always use shielded wire when making connections between the outdoor unit (OC) and the M-NET control indoor unit (M-IC), as well for all OC-OC, and IC-IC wiring intervals.
b. Use feed wiring to connect terminals M1 and M2 and the ground terminal on the transmission cable terminal block (TB3) of each outdoor unit (OC) to terminals M1 and M2 on the terminal S on the transmission cable terminal block of the M-NET control indoor unit (M-IC).
c. Connect terminals M1 and M2 on the transmission cable terminal block of the M-NET control indoor unit (M-IC) that has the most recent address within the same group to the terminal block on the M-NET remote controller (M-NET RC).
d. Connect together terminals M1, M2 and terminal S on the terminal block for centralized control (TB7) for the outdoor unit (OC).
e. DO NOT change the jumper connector CN41 on outdoor multi controller circuit board.
f. The earth processing of S terminal for the centralized control terminal block (TB7) is unnecessary. Connect the terminal S on the power supply unit with the earth.
g. Set the address setting switch as follows.

Unit	Range	Setting Method
M-IC (Main)	01 to 50	Use the smallest address within the same group of indoor units.
M-IC (Sub)	01 to 50	Use an address, other than the M-IC (Main) in the same group of M-NET indoor units. This must be in sequence with the M-IC (Main).
Outdoor Unit	51 to 100	Use the smallest address of all the indoor units plus 50. The address automatically becomes "100" if it is set as "01-50".
Main M-NET Remote Controller	101 to 150	Set at an M-IC (Main) address within the same group plus 100.
Sub M-NET Remote Controller	151 to 200	Set at an M-IC (Main) address within the same group plus 150.
MA Remote Controller	-	Address setting is not necessary. (Main/sub setting is necessary.)

h. The group setting operations among the multiple M-NET control indoor units is done by the M-NET remote controller (M-NET RC) after the electrical power has been turned on.
i. When connecting PWFY unit

- For PWFY series, do not set up group connection with other indoor units.
- LOSSNAY is not available for use with PWFY series.
- Use a WMA remote controller for operation of PWFY series.

For more details, refer to the service manual for PWFY series.

- Name, Symbol, and the Maximum Units for Connection

8-1. CHECK POINTS FOR TEST RUN

8-1-1. Procedures before test run

(1) Before a test run, make sure that the following work is completed.

- Installation related :

Make sure that the panel of cassette type and electrical wiring are done.
Otherwise electrical functions like auto vane will not operate normally.

- Piping related:

Perform leakage test of refrigerant and drain piping.
Make sure that all joints are perfectly insulated.
Check stop valves on both liquid and gas side for full open.

- Electrical wiring related :

Check ground wire, transmission cable, remote controller cable, and power supply cable for secure connection.
Make sure that all switch settings of address or adjustments for special specification systems are correctly settled.
(2) Safety check:

With the insulation tester of 500 V , inspect the insulation resistance.
Do not touch the transmission cable and remote controller cable with the tester.
The resistance should be over $1.0 \mathrm{M} \Omega$. Do not proceed inspection if the resistance is under $1.0 \mathrm{M} \Omega$.
Inspect between the outdoor unit power supply terminal block and ground first, metallic parts like refrigerant pipes or the electrical box next, then inspect all electrical wiring of outdoor unit, indoor unit, and all linked equipment .
(3) Before operation :
a) Turn the power supply switch of the outdoor unit to on for compressor protection. For a test run, wait at least 12 hours from this point.
b) Register control systems into remote controller(s). Never touch the ON/OFF switch of the remote controller(s). Refer to "7-2. Special Function Operation and Settings for M-NET Remote Controller" as for settings. In MA remote controller(s), this registration is unnecessary.
(4) More than 12 hours later from power supply to the outdoor unit, turn all power switch to on for the test run. Perform test run according to the "Operation procedure" table of the bottom of this page. While test running, make test run reports .

8-1-1-1. Test run for M-NET Remote controller

For the detailed procedure, refer to the remote controller's manuals.

8-1-1-2. Test run for wired remote controller <PAR-30MAA> <PAR-31MAA>

(1) Select "Service" from the Main menu, and press the \oslash button.
Select "Test run" with the F 1 or F 2 button, and press the \oslash button.

(2) Select "Test run" with the F1 or F2 button, and press the \searrow button.

Test run operation

Press the F1 button to go through the operation modes in the order of "Cool and Heat".

> Cool mode: Check the cold air blows out.
> Heat mode: Check the heat blows out.

Press the \searrow button and open the Vane setting screen.

Auto vane check*

Check the auto vane with the F1 F2 buttons.
Check the operation of the outdoor unit fan, also.

Press the button to return to "Test run operation".

Press the button.

When the test run is completed, the "Test run menu" screen will appear.
The test run will automatically stop after 2 hours.

*The function is available only for the model with vanes.

8-1-2. Countermeasures for Error During Test Run

- If a problem occurs during test run, a code number will appear on the remote controller (or LED on the outdoor unit), and the air conditioning system will automatically cease operating.

Determine the nature of the abnormality and apply corrective measures.

Check code (2 digits)	Check code (4 digits)$\|$	Trouble	Detected Unit			Remarks
			Indoor	Outdoor	Remote Controller	
Ed	0403	Serial communication error		\bigcirc		Outdoor unit outdoor multi controller circuit board - Power circuit board communication trouble
U2	1102	Compressor temperature trouble		\bigcirc		Check delay code 1202
UE	1302	High pressure trouble		\bigcirc		Check delay code 1402
U7	1500	Superheat due to low discharge temperature trouble		\bigcirc		Check delay code 1600
U2	1501	Refrigerant shortage trouble		\bigcirc		Check delay code 1601
		Closed valve in cooling mode		\bigcirc		Check delay code 1501
EF	1508	4-way valve trouble in heating mode		\bigcirc		Check delay code 1608
PA	2500	Water leakage	\bigcirc			
P5	2502	Drain over flow protection	\bigcirc			
P4	2503	Drain sensor trouble	\bigcirc			
UF	4100	Compressor current interruption (Locked compressor)		\bigcirc		Check delay code 4350
Pb	4114	Fan trouble (indoor)	\bigcirc			
UP	4210	Compressor overcurrent interruption		\bigcirc		
U9	4220	Voltage shortage/Overvoltage/PAM error/L1open phase/power synchronization signal error		\bigcirc		Check delay code 4320
U5	4230	Heat Sink temperature trouble		\bigcirc		Check delay code 4330
U6	4250	Power module trouble or Overcurrent trouble		\bigcirc		Check delay code 4350
U8	4400	Fan trouble (Outdoor)		\bigcirc		Check delay code 4500
U3	5101	Air inlet thermistor (TH21) open/short or	\bigcirc			
		Compressor temperature thermistor (TH4) open/short		\bigcirc		Check delay code 1202
U4	5102	Liquid pipe temperature thermistor (TH22) open/short or Suction pipe temperature thermistor (TH6) open/short	\bigcirc			
				\bigcirc		Check delay code 1211
U4	5103	Gas pipe temperature thermistor (TH 23) open/short	\bigcirc			
U4	5105	Outdoor liquid pipe temperature thermistor (TH3) open/short		\bigcirc		Check delay code 1205
U4	5106	Ambient thermistor (TH7) open/short		\bigcirc		Check delay code 1221
U4	5109	HIC pipe temperature thermistor (TH2) open/short		\bigcirc		Check delay code 1222
U4	5110	Heat Sink temperature thermistor (TH8) open/short		\bigcirc		Check delay code 1214
F5	5201	High pressure sensor (63HS) trouble		\bigcirc		Check delay code 1402
F3	5202	Low pressure sensor (63LS) trouble		\bigcirc		Check delay code 1400
UH	5300	Primary current error		\bigcirc		Check delay code 4310
P4	5701	Contact failure of drain float switch	\bigcirc			
A0	6600	Duplex address error	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A2	6602	Transmission processor hardware error	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A3	6603	Transmission bus BUSY error	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A6	6606	Signal communication error with transmission processor	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
A7	6607	No ACK error	\bigcirc		\bigcirc	Only M-NET Remote controller is detected.
A8	6608	No response frame error	\bigcirc		\bigcirc	Only M-NET Remote controller is detected.
E0/E4	6831	MA communication receive error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
E3/E5	6832	MA communication send error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
E3/E5	6833	MA communication send error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
E0/E4	6834	MA communication receive error	\bigcirc		\bigcirc	Only MA Remote controller is detected.
EF	7100	Total capacity error		\bigcirc		
EF	7101	Capacity code error	\bigcirc	\bigcirc		
EF	7102	Connecting unit number error		\bigcirc		
EF	7105	Address setting error		\bigcirc		
EF	7130	Incompatible unit combination		\bigcirc		

Notes:

1. When the outdoor unit detects No ACK error/No response error, an object indoor unit is treated as a stop, and not assumed to be abnormal. 2. Refer to the service manual of indoor unit or remote controller for the detail of error detected in indoor unit or remote controller.

Self-diagnosis function
The indoor and outdoor units can be diagnosed automatically using the self-diagnosis switch (SW1) and LED1, LED2 (LED indication) found on the multi-controller of the outdoor unit. LED indication : Set all contacts of SW1 to OFF.
During normal operation
The LED indicates the drive state of the controller in the outdoor unit.

Bit	1	2	3	4	5	6	7	8
Indication	Compressor operated	52 C	21 S 4	SV1	(SV2)	-	-	Always lit

[Example]
When the compressor and SV1 are turned during cooling operation.

Serial communication error

Abnormal points and detection methods	Causes and check points
Abnormal if serial communication between the outdoor multi controller circuit board and outdoor power circuit board is defective.	(1) Wire breakage or contact failure of connector CN2 or CN4
(2) Malfunction of communication circuit to power circuit	
board on outdoor multi controller circuit board	
(3) Malfunction of communication circuit on outdoor	
power circuit board	

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor temperature trouble

Abnormal points and detection methods
 Causes and check points

(1) Abnormal if TH4 falls into following temperature conditions;
-exceeds $230^{\circ} \mathrm{F}$ [$110^{\circ} \mathrm{C}$] continuously for 5 minutes
-exceeds $257^{\circ} \mathrm{F}\left[125^{\circ} \mathrm{C}\right.$]
(2) Abnormal if a pressure detected by the high-pressure sensor and converted to saturation temperature exceeds $104^{\circ} \mathrm{F}$ [$40^{\circ} \mathrm{C}$] during defrosting, and TH 4 exceeds $230^{\circ} \mathrm{F}\left[110^{\circ} \mathrm{C}\right.$].

TH4: Thermistor <Compressor>
LEV: Electronic expansion valve
(1) Malfunction of stop valve
(2) Over-heated compressor operation caused by shortage of refrigerant
(3) Defective thermistor
(4) Defective outdoor multi controller circuit board
(5) LEV performance failure
(6) Defective indoor controller board
(7) Clogged refrigerant system caused by foreign object
(8) Refrigerant shortage
(Refrigerant liquid accumulation in compressor while indoor unit is OFF/thermo-OFF.)
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor temperature trouble

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

High pressure trouble

Abnormal points and detection methods

<63H equipped model (63HS non-equipped)>
(1) High pressure abnormality (63 H operation)

Abnormal if 63 H operates(*) during compressor operation. (* 602 PSIG [4.15 MPaG])
<63HS equipped model (63 H non-equipped)>
(2) High pressure abnormality (63 HS detected)

1. Abnormal if a pressure detected by 63HS is 625 PSIG [4.31 MPaG] or more during compressor operation.
2. Abnormal if a pressure detected by 63 HS is 600 PSIG [4.14 MPaG] or more for 3 minutes during compressor operation.

63H : High-pressure switch
63HS: High-pressure sensor
LEV : Electronic expansion valve
SV1 : Solenoid valve
TH7 : Thermistor <Ambient>
(1) Defective operation of stop valve (not fully open)
(2) Clogged or broken pipe
(3) Malfunction or locked outdoor fan motor
(4) Short-cycle of outdoor unit
(5) Dirt of outdoor heat exchanger
(6) Remote controller transmitting error caused by noise interference
(7) Contact failure of the outdoor multi controller circuit board connector
(8) Defective outdoor multi controller circuit board
(9) Short-cycle of indoor unit
(10) Decreased airflow, clogged filter, or dirt on indoor unit.
(11) Malfunction or locked indoor fan motor
(12) Decreased airflow caused by defective inspection of outdoor temperature thermistor (It detects lower temperature than actual temperature.)
(13) Indoor LEV performance failure
(44) Malfunction of fan driving circuit
(15) SV1 performance failure
(6) Defective high-pressure sensor
(17) Defective high-pressure sensor input circuit on outdoor multi controller circuit board
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

High pressure trouble

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Superheat due to low discharge temperature trouble

Chart 1 of 2

Abnormal points and detection methods

Causes and check points

Abnormal if the discharge superheat is continuously detected $-27^{\circ} \mathrm{F}\left[-15^{\circ} \mathrm{C}\right]$ or less (*) for 5 minutes even though the indoor LEV has minimum open pulse after the compressor starts operating for 10 minutes.

LEV : Electronic expansion valve
TH4 : Thermistor <Compressor>
63HS: High-pressure sensor
*At this temperature, conditions for the abnormality detection will not be satisfied if no abnormality is detected on either TH4 or 63HS.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

1500 (U7)

Superheat due to low discharge temperature trouble

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Refrigerant shortage trouble

Chart 1 of 2

Abnormal points and detection methods

Causes and check points

(1) Abnormal when all of the following conditions are satisfied for 15 consecutive minutes:

1. The compressor is operating in HEAT mode.
2.Discharge super heat is $176^{\circ} \mathrm{F}\left[80^{\circ} \mathrm{C}\right]$ or more.
3.Difference between TH7 and the TH3 applies to the formula of (TH7-TH3 < $9^{\circ} \mathrm{F}\left[5^{\circ} \mathrm{C}\right]$)
2. The saturation temperature converted from a high pressure sensor detects below $95^{\circ} \mathrm{F}\left[35^{\circ} \mathrm{C}\right]$.
(2) Abnormal when all of the following conditions are satisfied: 1.The compressor is in operation
2.When cooling, discharge superheat is $176^{\circ} \mathrm{F}\left[80^{\circ} \mathrm{C}\right]$ or more, and the saturation temperature converted from a high pressure sensor is over $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$.
When heating, discharge superheat is $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more.
(1) Defective operation of stop valve (not fully open) (2) Defective thermistor
(3) Defective outdoor multi controller circuit board
(4) Indoor LEV performance failure
(5) Gas leakage or shortage
(6) Defective 63HS

TH3 : Thermistor <Outdoor liquid pipe>
TH7 : Thermistor <Ambient>
LEV : Electronic expansion valve
63HS: High-pressure sensor
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

- Diagnosis of defectives

Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Closed valve in cooling mode

Abnormal points and detection methods

Causes and check points

Abnormal if stop valve is closed during cooling operation.
Abnormal when both of the following temperature conditions are satisfied for 20 minutes or more during cooling operation.

1. TH22j-TH21j $\geqq-3.6^{\circ} \mathrm{F}\left[-2^{\circ} \mathrm{C}\right]$
2. $\mathrm{TH} 23 \mathrm{j}-\mathrm{TH} 21 \mathrm{j} \geqq-3.6^{\circ} \mathrm{F}\left[-2^{\circ} \mathrm{C}\right]$

Note:
For indoor unit, the abnormality is detected if an operating unit satisfies the condition.
(1) Outdoor liquid/gas valve is closed.
(2) Malfunction of outdoor LEV (LEV1)(blockage)

TH21: Indoor intake temperature thermistor TH22: Indoor liquid pipe temperature thermistor TH23: Indoor gas pipe temperature thermistor LEV: Electronic expansion valve
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

4-way valve trouble in heating mode

Abnormal points and detection methods

Causes and check points

Abnormal if 4-way valve does not operate during heating operation
Abnormal when any of the following temperature conditions is satisfied for 3 min . or more during heating operation

1. $\mathrm{TH} 22 \mathrm{j}-\mathrm{TH} 21 \mathrm{j} \leqq-18^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C}\right]$
2. TH23j-TH21j $\leqq-18^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C}\right]$
3. $\mathrm{TH} 22 \mathrm{j} \leqq 37.4^{\circ} \mathrm{F}\left[3^{\circ} \mathrm{C}\right]$
4. $\mathrm{TH} 23 \mathrm{j} \leqq 37.4^{\circ} \mathrm{F}\left[3^{\circ} \mathrm{C}\right]$

Note:
For indoor unit, the abnormality is detected if an operating unit satisfies the condition.
(1) 4-way valve failure
(2) Disconnection or failure of 4-way valve coil
(3) Clogged drain pipe
(4) Disconnection or loose connection of connectors
(5) Malfunction of input circuit on outdoor multi controller circuit board
(6) Defective outdoor power circuit board

TH21: Indoor intake temperature thermistor
TH22: Indoor liquid pipe temperature thermistor
TH23: Indoor gas pipe temperature thermistor
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor current interruption (Locked compressor)

Abnormal points and detection methods

Abnormal if overcurrent of DC bus or compressor is detected before 30 seconds after the compressor starts operating.

Causes and check points

(1) Closed stop valve
(2) Decrease of power supply voltage
(3) Looseness, disconnection, or wrong phase of compressor wiring connection
(4) Model selection error on indoor controller board or outdoor multi controller circuit board
(5) Defective compressor
(6) Defective outdoor power circuit board
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

4100 (UF)

Compressor current interruption (Locked compressor)

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor overcurrent interruption

Chart 1 of 2

Abnormal points and detection methods
 Causes and check points

Abnormal if overcurrent of DC bus or compressor is detected after 30

Abstract

seconds since the compressor starts operating.

(1) Closed outdoor stop valve
(2) Decrease of power supply voltage
(3) Looseness, disconnection, or wrong phase of compressor wiring connection
(4) Model selection error on indoor controller board or outdoor multi controller circuit board
(5) Defective compressor
(6) Defective outdoor power circuit board
(7) Defective outdoor multi controller circuit board
(8) Malfunction of indoor/outdoor unit fan
(9) Short-cycle of indoor/outdoor unit
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Compressor overcurrent interruption

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Abnormal points and detection methods

Causes and check points

Abnormal if any of following symptoms are detected;
-Decrease of DC bus voltage to 200 V

- Increase of DC bus voltage to 400 V
- DC bus voltage stays at 310 V or less for consecutive 30 seconds when the operational frequency is over 20 Hz .
-When any of the following conditions are satisfied while the detection value of primary current is 0.1 A or less.

1. The operational frequency is 40 Hz or more.
2. The compressor current is 6 A or more.
(1) Decrease/increase of power supply voltage,
(2) Primary current sensor failure
(3) Disconnection of compressor wiring
(4) Malfunction of 52C
(5) Disconnection or contact failure of CN52C
(6) Defective outdoor power circuit board
(7) Malfunction of 52C driving circuit on outdoor multi controller circuit board
(8) Disconnection of CN5
(9) Disconnection of CN2
(10) Malfunction of primary current detecting circuit on outdoor power circuit board
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square (■) indicates a switch position.

Voltage shortage/Overvoltage/PAM error/L1 open-phase/

 Primary current sensor error/Power synchronization signal error- Diagnosis of defectives

Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($\mathbf{\square}$) indicates a switch position.

Heat sink temperature trouble

Abnormal points and detection methods

Causes and check points

Abnormal if TH8 detects a temperature outside the specified range during compressor operation.

TH8: Thermistor <Heat sink>
(1) Blocked outdoor fan
(2) Malfunction of outdoor fan motor
(3) Blocked airflow path
(4) Rise of ambient temperature
(5) Characteristic defect of thermistor
(6) Malfunction of input circuit on outdoor power circuit board
(7) Malfunction of outdoor fan driving circuit
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Power module trouble

Abnormal points and detection methods
 Causes and check points

Abnormal if both of the following conditions are satisfied:

1. Overcurrent of $D C$ bus or compressor is detected during compressor operation.
2. Inverter power module is determined to be defected.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Fan trouble (Outdoor unit)

Compressor temperature thermistor (TH4) open/short

<Detected in outdoor unit>

Abnormal points and detection methods	Causes and check points
Abnormal if TH4 detects to be open/short. (The open/short detection is disabled for 10 minutes after compressor starts, during defrosting operation, or for 10 minutes after returning from the defrosting operation.)	(1) Disconnection or contact failure of connectors Open: $37.4^{\circ} \mathrm{F}\left[3^{\circ} \mathrm{C}\right]$ or less Short: $422.6^{\circ} \mathrm{F}\left[217^{\circ} \mathrm{C}\right]$ or more $\quad \mathrm{TH} 4:$ Thermistor <Compressors

- Diagnosis of defectives

Make sure to turn the power OFF before connecting/disconnecting
any connectors, or replacing boards.
The black square ($\mathbf{\square}$) indicates a switch position.

5102 (U4)

Suction pipe temperature thermistor (TH6) open/short

<Detected in outdoor unit>

Abnormal points and detection methods \quad Causes and check points

Abnormal if TH6 detects to be open/short.
(The open/short detection is disabled during 10 seconds to 10 minutes after compressor starts, during defrosting operation, or for 10 minutes after returning from the defrosting operation.)
Open: $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ or less
Short: $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more TH6: Thermistor <Suction pipe>

- Diagnosis of defectives

Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($\mathbf{\square}$) indicates a switch position.

5105 (U4)

Outdoor liquid pipe temperature thermistor (TH3) open/short

Abnormal points and detection methods

Abnormal if TH3 detects to be open/short.
(The open/short detection is disabled during 10 seconds to 10 minutes after compressor starts, during defrosting operation, or for 10 minutes after returning from the defrosting operation.)
Open: $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right.$] or less
Short: $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more TH3: Thermistor <Outdoor liquid pipe>
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square ($\mathbf{\square}$) indicates a switch position.

Ambient thermistor (TH7) open/short

Causes and check points

Abnormal if TH7 detects to be open/short.
Open: $-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ or less
Short: $194^{\circ} \mathrm{F}\left[90^{\circ} \mathrm{C}\right]$ or more

TH7: Thermistor <Ambient>
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting
any connectors, or replacing boards.
The black square (■) indicates a switch position.
Diagnosis
Remedy

Connect the wiring/connector properly. Replace it in case of a breakage.
Check the wiring and connector connection of TH7.

Causes and check points

Abnormal points and detection methods

Abnormal if TH8 (Internal thermistor) detects to be open/short.
Open: $-31.2^{\circ} \mathrm{F}\left[-35.1^{\circ} \mathrm{C}\right]$ or more
Short: $338.5^{\circ} \mathrm{F}$ [$170.3^{\circ} \mathrm{C}$] or less
(1) Disconnection or contact failure of connectors
(2) Characteristic defect of thermistor
(3) Defective outdoor multi controller circuit board

TH8: Thermistor <Heat sink>
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square (■) indicates a switch position.

High pressure sensor (63HS) trouble

Abnormal points and detection methods

Causes and check points

(1) When the detected pressure in the high pressure sensor is 14 PSIG or less during operation, the compressor stops operation and enters into an anti-restart mode for 3 minutes.
(2) When the detected pressure is 14 PSIG or less immediately before restarting, the compressor falls into an abnormal stop with a check code <5201>.
(3) For 3 minutes after compressor restarting, during defrosting operation, and for 3 minutes after returning from defrosting operation, above mentioned symptoms are not determined as abnormal.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting
any connectors, or replacing boards.
The black square (\quad) indicates a switch position.

Low pressure sensor (63LS) trouble

Abnormal points and detection methods

Causes and check points

(1) When the detected pressure in the low pressure sensor is -33 PSIG or less, or 329 PSIG or more during operation, the compressor stops operation with a check code <5202>.
(2) For 3 minutes after compressor restarting, during defrosting operation, and for 3 minutes after returning from defrosting operation, above mentioned symptoms are not determined as abnormal.
(1) Defective low pressure sensor
(2) Decrease of internal pressure caused by gas leakage
(3) Disconnection or contact failure of connector
(4) Malfunction of input circuit on outdoor multi controller circuit board
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

The black square (■) indicates a switch position.

Primary current error

Abnormal points and detection methods

Causes and check points

Abnormal if any of the following conditions is detected:
(1) Primary current sensor detects any of the following conditions (single phase unit only):

10 consecutive- second detection	One-time detection
37 A	40 A

(2) Secondary current sensor detects 25 A or more.
(3) Secondary current sensor detects 1.0 A or less.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Duplex address error

Abnormal points and detection methods	Causes and check points
Abnormal if 2 or more units with the same address are existing.	$\begin{array}{l}\text { (1) There are } 2 \text { units or more with the same address } \\ \text { in their controller among outdoor unit, indoor unit, } \\ \text { Fresh Master, Lossnay or remote controller }\end{array}$
(2) Noise interference on indoor/outdoor connectors	

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Transmission processor hardware error

Abnormal points and detection methods

Causes and check points

Abnormal if the transmission line shows "1" although the transmission processor transmitted "0".
(1) A transmitting data collision occurred because of a wiring work or polarity change has performed while the power is ON on either of the indoor/outdoor unit, Fresh Master or Lossnay
(2) Malfunction of transmitting circuit on transmission processor
(3) Noise interference on indoor/outdoor connectors
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Transmission bus BUSY error

Abnormal points and detection methods

(1)Over error by collision

Abnormal if no-transmission status caused by a transmitting data collision is consecutive for 8 to 10 minutes.
(2) Abnormal if a status, that data is not allowed on the transmission line because of noise and such, is consecutive for 8 to 10 minutes.

Causes and check points

(1) The transmission processor is unable to transmit due to a short-cycle voltage such as noise is mixed on the transmission line.
(2) The transmission processor is unable to transmit due to an increase of transmission data amount caused by a miswiring of the terminal block (transmission line) (TB3) and the terminal block (centralized control line) (TB7) on the outdoor unit.
(3) The share on transmission line becomes high due to a mixed transmission caused by a malfunction of repeater on the outdoor unit, which is a function to connect/disconnect transmission from/to control system and centralized control system.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Signal communication error with transmission processor

Abnormal points and detection methods	Causes and check points
(1) Abnormal if the data of unit/transmission processor were not normally transmitted.	(1) Accidental disturbance such as noise or lightning surge
(2) Abnormal if the address transmission from the unit processor was not normally transmitted.	(2) Hardware malfunction of transmission processor

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Abnormal points and detection methods

(1) Represents a common error detection An abnormality detected by the sending side controller when receiving no ACK from the receiving side, though signal was once sent. The sending side searches the error in 30 seconds interval for 6 times continuously.
(
(2) The cause of displayed address and attribute is on the outdoor unit side. An abnormality detected by the indoor unit if receiving no ACK when transmitting signal from the indoor unit to the outdoor unit.
(3) The cause of displayed address and attribute is on the indoor unit side. An abnormality detected by the remote controller if receiving no ACK when sending data from the remote controller to the indoor unit.
(4) The cause of the displayed address and attribute is on the remote
controller side
An abnormality detected by the indoor unit if receiving no ACK when
transmitting signal from the indoor unit to the remote controller. controller side transmitting signal from the indoor unit to the remote controller.

Causes and check points

(1) The previous address unit does not exist since the address switch was changed while in electric continuity status.
(2) Decline of transmission voltage/signal caused by tolerance over on transmission line -At the furthest end: 656 ft [200 m] - On remote controller line: 39 ft [12 m]
(3) Decline of transmission voltage/signal due to unmatched transmission line types -Types for shield line: CVVS, CPEVS or MVVS -Line diameter: AWG 16 [1.25 mm²] or more
(4) Decline of transmission voltage/signal due to excessive number of connected units
(5) Malfunction due to accidental disturbance such as noise or lightning surge
(6) Defect of error source controller
(1) Contact failure of indoor/outdoor unit transmission line.
(2) Disconnection of transmission connector (CN2M) on indoor unit.
(3) Malfunction of sending/receiving circuit on indoor/ outdoor unit.
(1) While operating with multi refrigerant system indoor units, an abnormality is detected when the indoor unit transmit signal to the remote controller during the other refrigerant-system outdoor unit is turned OFF, or within 2 minutes after it turned back ON.
(2) Contact failure of indoor unit or remote controller transmission line
(3) Disconnection of transmission connector (CN2M) on indoor unit
(4) Malfunction of sending/receiving circuit on indoor unit or remote controller
(1) While operating with multi refrigerant system indoor units, an abnormality is detected when the indoor unit transmit signal to the remote controller during the other refrigerant-system outdoor unit is turned OFF, or within 2 minutes after it turned back ON.
(2) Contact failure of indoor unit or remote controller transmission line
(3) Disconnection of transmission connector (CN2M) on indoor unit
(4) Malfunction of sending/receiving circuit on indoor unit or remote controller

Chart 2 of 4

Abnormal points and detection methods

Causes and check points

(5) The cause of displayed address and attribute is on the Fresh Master side.
An abnormality detected by the indoor unit if receiving no ACK when transmitting signal from the indoor unit to the Fresh Master.
(6) The cause of displayed address and attribute is on Lossnay side.
An abnormality detected by the indoor unit if receiving no ACK when the
indoor unit transmit signal to the Lossnay.
(1) While the indoor unit is operating with multi refrigerant system Fresh Master, an abnormality is detected when the indoor unit transmits signal to the remote controller while the outdoor unit with the same refrigerant system as the Fresh Master is turned OFF, or within 2 minutes after it turned back ON.
(2) Contact failure of indoor unit or Fresh Master transmission line
(3) Disconnection of transmission connector (CN2M) on indoor unit or Fresh Master
(4) Malfunction of sending/receiving circuit on indoor unit or Fresh Master
(1) An abnormality is detected when the indoor unit transmits signal to Lossnay while the Lossnay is turned OFF.
(2) While the indoor unit is operating with the other refrigerant Lossnay, an abnormality is detected when the indoor unit transmits signal to the Lossnay while the outdoor unit with the same refrigerant system as the Lossnay is turned OFF, or within 2 minutes after it turned back ON.
(3) Contact failure of indoor unit or Lossnay transmission line
(4) Disconnection of transmission connector (CN2M) on indoor unit
(5) Malfunction of sending/receiving circuit on indoor unit or Lossnay
(1) The previous address unit does not exist since the address switch was changed while in electric continuity status.
(2) An abnormality detected at transmitting from the indoor unit since the Fresh Master/Lossnay address are changed after synchronized setting of Fresh Master/Lossnay by the remote controller.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

No ACK error

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

No response frame error

Abnormal points and detection methods

Abnormal if receiving no response command while already received ACK. The sending side searches the error in 30 seconds interval for 6 times continuously.

Causes and check points

(1) Continuous failure of transmission due to noise, etc
(2) Decline of transmission voltage/signal caused by tolerance over on transmission line
At the furthest end: 656 ft [200 m] On remote controller line: 39 ft [12 m]
(3) Decline of transmission voltage/signal due to unmatched transmission line types
-Types for shield line: CVVS, CPEVS, or MVVS -Line diameter: AWG 16 [1.25 mm²] or more
(4) Accidental malfunction of error source controller
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

MA communication receive error

Abnormal points and detection methods

Detected in remote controller or indoor unit:
(1) When the main or sub remote controller cannot receive signal from indoor unit which has the " 0 " address.
(2) When the sub remote controller cannot receive signal.
(3) When the indoor controller board cannot receive signal from remote controller or another indoor unit.
(4) When the indoor controller board cannot receive signal.

Causes and check points

(1) Contact failure of remote controller wirings (2) Irregular Wiring
(A wiring length, number of connecting remote controllers or indoor units, or a wiring thickness does not meet the conditions specified in the chapter
"Electrical Work" in the indoor unit Installation Manual.)
(3) Malfunction of the remote controller sending/ receiving circuit on indoor unit with the LED2 is blinking.
(4) Malfunction of the remote controller sending/ receiving circuit
(5) Remote controller transmitting error caused by noise interference
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards

MA communication send error

Chart 1 of 2

Abnormal points and detection methods	Causes and check points
Detected in remote controller or indoor unit.	(1) There are 2 remote controllers set as main. (2) Malfunction of remote controller sending/receiving circuit (3) Malfunction of sending/receiving circuit on indoor controller board (4) Remote controller transmitting error caused by noise interference

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards

Total capacity error

Abnormal points and detection methods

When the total capacity of connected indoor units exceeds the specified capacity (130% of the outdoor unit capacity), a check code $<7100>$ is displayed.

Causes and check points

(1) The total capacity of connected indoor units exceeds the specified capacity.

- P60 model: up to code 56
(2) The model name code of the outdoor unit is registered wrongly.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Capacity code error

Abnormal points and detection methods	Causes and check points
When a connected indoor unit is incompatible, a check code <7101> is displayed.	The model name of connected indoor unit (model code) is read as incompatible. The connectable indoor units are: - P60 model: P06 to P72 model (code 4 to 40)

-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Connecting unit number error

Abnormal points and detection methods

Causes and check points

When the connected indoor unit exceeds the limit, a check code $<7102>$ is displayed.

Connecting more indoor units than the limit.
Abnormal if connecting status does not comply with the following limit;
(1) Connectable up to 12 indoor units
(2) Connect at least 1 indoor unit (Abnormal if connected none).
(3) Connectable only 1 ventilation unit
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Address setting error

Causes and check points

The address setting of connected unit is wrong
There is a unit without correct address setting in the range specified in "7-4. SYSTEM CONTROL".
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

Incompatible unit combination error

Abnormal points and detection methods

Causes and check points

When the connected indoor unit is not connectable with the outdoor unit, the outdoor unit detects the error at start-up.

Connecting indoor unit (s) which is not authorized to connect to the outdoor unit.
-Diagnosis of defectives
Make sure to turn the power OFF before connecting/disconnecting any connectors, or replacing boards.

8-2. REMOTE CONTROLLER DIAGNOSIS

For the detailed procedure, refer to the remote controller's manuals.

8-3. REMOTE CONTROLLER TROUBLE

For the troubleshooting, refer to the remote controller's manuals.

8-4. THE FOLLOWING SYMPTOM DO NOT REPRESENT TROUBLE (EMERGENCY)

Symptom	Display of remote controller	CAUSE
Even the cooling (heating) operation selection button is pressed, the indoor unit cannot be operated.	"Cooling (Heating)" blinks	The indoor unit can not cool (Heat) if other indoor units are heating (Cooling).
The auto vane runs freely.	Normal display	Because of the control operation of auto vane, it may change over to horizontal blow automatically from the downward blow in cooling in cause the downward blow operation has been continued for 1 hour. At defrosting in heating, hot adjusting and thermostat OFF, it automatically changes over to horizontal blow.
Fan setting changes during heating.	Normal display	Ultra-low speed operation is commenced at thermostat OFF. Light air automatically change over to set value by time or piping temperature at thermostat ON.
Fan stops during heating operation.	"Defrost \$'	The fan is to stop during defrosting.
Fan does not stop while operation has been stopped.	Light out	Fan is to run for 1 minute after stopping to exhaust residual heat (only in heating).
No setting of fan while start SW has been turned on.	STAND BY ¢	Ultra-low speed operation for 5 minutes after SW ON or until piping temperature becomes $35^{\circ} \mathrm{C}$. There low speed operate for 2 minutes, and then set notch is commenced. (Hot adjust control)
Indoor unit remote controller shows "HO" or "PLEASE WAIT" indicator for about 2 minutes when turning ON power supply.	"HO" blinks "PLEASE WAIT" blinks	System is being driven. Operate remote controller again after "HO" or "PLEASE WAIT" disappears.
Drain pump does not stop while unit has been stopped.	Light out	After a stop of cooling operation, unit continues to operate drain pump for 3 minutes and then stops it.
Drain pump continues to operate while unit has been stopped.	-	Unit continues to operate drain pump if drainage is generated, even during a stop.

8-5. INTERNAL SWITCH FUNCTION TABLE

Switch	Step	Function	Operation in Each Switch Setting			Remarks	Purpose	Additional Information
			ON	OFF	When to Set			
SWU1 ones digit SWU2 tens digit		Hesion			Before turning the power ON	<Initial settings>		
SW1 Digital Display Switch	1-8	$\underset{\text { OFF }}{\text { ON }} \frac{\square}{\square} \frac{\square}{123456}$			Can be set either during operation or not.	<lnitial settings>		
SW2 Function Switch	1	Selects operating system startup	Wth centralized controller	Wthout centralized controller	Before turning the power ON	<Initial settings>	Turn ON when the centralized controller is connected to the outdoor unit.	SW2-1 must be turned ON if a central controller is connected to the system. An example of this would be a TC-24, EW-5OA, AG150,AE50 or AE200. If SW2-1 is not turned on, while using a central controler, in rare circumstances problems may be encountered such as indoor units not responding to group commands. Therefore, turning SW2-1 ON is recommended ifa central controller is used.
	2	Connection Information Clear Switch	Clear	Do not clear			When relocating units or connecting additional units.	-
	3	Abnormal data clear switch input	Clear abnormal data	Normal	Off to ON any time after the power is turned on.		To delete an error history.	
	4	Pump down	Run adjustment mode	Normal	During compressor running		To facilitate outdoor unit the pumping down operation. Frequency $=$ Fixed to 65 Hz Indoor-electronic expansion valve = Fully open Outdoor fan step = Fixed to 10	Please refer to a section referring to the pumping down on outdoor units Installation Manuals. It might not be possible to collect all the refrigerant if the amount is excessive.
	5	-	-	-	-	-	-	-
	6	-	-	-	-	-	-	-
SW4/ SW8 Model Switch	1-6	MODEL SELECTION 1:ON 0:OFF						
		MODEL SW4 PUMY-P60NKMU1 ONFF 1012345	$\begin{gathered} \text { SW8 } \\ \hline \text { ON } \begin{array}{c} \square \\ \text { OFF } \\ 12 \\ 12 \\ \hline \end{array} \end{gathered}$		Before the power is turned ON .	<Initial settings> Set for each capacity.	-	-
SW3 Trial operation	1	ON/OFF from outdoor unit	ON	OFF	Any time after the power is turned ON	<\|nitial settings>$\begin{aligned} & \text { ON } \\ & \text { OFF } \\ & \square \end{aligned}$	-	-
	2	Mode setting	Heating	Cooling			-	-
SW5 Function switch	1	-	-	-	-	<Initial settings>	-	-
	2	Change the indoor unit's LEV opening at start-up	Enable	Normal	Can be set when off or during operation		To set the LEV opening at start-up higher than usual. (+150 pulses) To improve the operation with the LEV almost clogged.	The refrigerant flow noise at start-up become louder.
	3	-	-	-	-		-	-
	4	Auxiliary heater	Enable	Disable	Before the power is turned ON .		Tum ON when an auxiliay heater is connected. (It transmits a connection pemission signal of the audiliay heater to the connected GTY MLTT indoor unit.)	Turn ON only when the auxiliary heater is connected and operated.
	5	Change the indoor unit's LEV opening at defrost	Enable	Normal	Can be set when OFF or during operation		To set the LEV opering higher than usula during defrosing operation. (Only $\mathrm{Q} \leqq \leq 10$ is valid, +30 pulles) To avoid the discharge temperature increase and provice efficient deffosingoperaion.	The refrigerant flow noise during the defrosting operation becomes louder.
	6	Switching the target sub cool (Heating mode)	Enable	Normal			To decrease the target sub cool value. To reduce the discharge temperature decrease due to refrigerant liquid accumulation in the units.	A refrigerant flow noise might be generated if the sub cool value is too small.

*1 SW5-7 Opens the indoor-electronic expansion valve as a countermeasure against the indoor unit in FAN, COOL, STOP, or thermo-OFF operation with refrigerant-shortage status due to an accumulation of liquid refrigerant in the indoor unit.
$* 2$ SW5-8 Countermeasure against room temperature rise for indoor unit in FAN, COOOL and thermo-OFF (heating) mole *2 SW5-8 Countermeasure against room temperature rise for indoor unit in FAN, COOL, and thermo-OFF (heating) mode.
*4 During heating mode is OFF (include thermo-OFF in cooling mode), and the ambient temperature is $4^{\circ} \mathrm{C}$ or below, the freeze prevention heater is energized.

8-6. OUTDOOR UNIT INPUT/OUTPUT CONNECTOR
 - State (CN51)

(A) Distant control board
(B) Relay circuit
(E) Lamp power supply
(B) Relay circuit
© Procure locally
(C) External output adapter (PAC-SA88HA-E) (G) Max. 10m
(D) Outdoor unit control board

L1: Error display lamp
L2: Compressor operation lamp
X, Y: Relay (Coil standard of 0.9 W or less for 12 V DC)
X, Y: Relay (1 mA DC)

- Auto change over (CN3N)

- Silent Mode/Demand Control (CN3D)

A Remote control pane
(B) Relay circuit
(E) Relay power supply
© Procure locally
(C) Max. 10 m
(D) Outdoor unit control board

	ON	OFF
SW1	Heating	Cooling
SW2	Validity of SW1	Invalidity of SW1

(A) Remote control pane

(B) Relay circuit
(E) Relay power supply

D Outdoor unit control board
(E) Procure locally
() Max. 10 m

The silent mode and the demand control are selected by switching the DIP switch 9-2 on outdoor controller board. It is possible to set it to the following power consumption (compared with ratings) by setting SW1, 2.

	Outdoor controller board DIP SW9-2	SW1	SW2	Function
Silent mode	OFF	ON	-	Silent mode operation
Demand control	ON	OFF	OFF	100% (Normal)
		ON	OFF	75%
		ON	ON	50%
		OFF	ON	0% (Stop)

8-7. HOW TO CHECK THE PARTS
 PUMY-P60NKMU1 PUMY-P60NKMU1-BS

Check method of DC fan motor (fan motor/outdoor multi controller circuit board)

(1) Notes

- High voltage is applied to the connecter (CNF1,2) for the fan motor. Pay attention to the service.
- Do not pull out the connector (CNF1,2) for the motor with the power supply on.
(It causes trouble of the outdoor multi controller circuit board and fan motor.)
(2) Self check

Symptom : The outdoor fan cannot rotate.

Fuse check

Check the fuse (F500) on outdoor
multi controller circuit board.

Wiring contact check
Contact of fan motor connector (CNF1,2)
\downarrow

Power supply check (Remove the connector (CNF1,2))
(1) While the breaker is OFF, disconnect the compressor wirings (U/V/W) from the outdoor power circuit board.
(2) While the breaker is OFF, disconnect the fan motor connector CNF1,2.
(3) When 5 minutes have passed since turning ON the breaker, turn SW7-1 ON.
(4) Check the voltage of the outdoor multi controller circuit board

Measure the voltage in the outdoor controller circuit board.
TEST POINT 1: VDC (between $1(+)$ and 4 (-) of the fan connector): 310-340 V DC (Y)
: VDC (between $1(+)$ and 4 (-) of the fan connector): 280-340 V DC (when PFC module stops),
: 380 V DC (when PFC module is operating) (V)
TEST POINT 2: VCC (between $5(+)$ and $4(-)$ of the fan connector): VCC 15 V DC
TEST POINT 3: VCC (between $6(+)$ and 4 (-) of the fan connector): VCC $0-6.5 \mathrm{~V}$ DC
\downarrow

Note: Turn SW7-1 OFF after the troubleshooting completes.

Check method of multi controller circuit board

Check method of power circuit board

Check method of M-NET power circuit board

8-8. HOW TO CHECK THE COMPONENTS

<Thermistor feature chart>

Low temperature thermistors

- Thermistor <Hic pipe> (TH2)
- Thermistor <Outdoor liquid pipe> (TH3)
- Thermistor <Suction pipe> (TH6)
- Thermistor <Ambient> (TH7)

Thermistor $\mathrm{RO}=15 \mathrm{k} \Omega \pm 3 \%$
B constant $=3480 \pm 2 \%$
$R t=15 \exp \left\{3480\left(\frac{1}{273+t}-\frac{1}{273}\right)\right\}$
$32^{\circ} \mathrm{F}\left[0^{\circ} \mathrm{C}\right] \quad 15 \mathrm{k} \Omega \quad 86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right] \quad 4.3 \mathrm{k} \Omega$
$50^{\circ} \mathrm{F}\left[10^{\circ} \mathrm{C}\right] \quad 9.6 \mathrm{k} \Omega \quad 104^{\circ} \mathrm{F}\left[40^{\circ} \mathrm{C}\right] \quad 3.0 \mathrm{k} \Omega$
$68^{\circ} \mathrm{F}\left[20^{\circ} \mathrm{C}\right] \quad 6.3 \mathrm{k} \Omega$
$77^{\circ} \mathrm{F}\left[25^{\circ} \mathrm{C}\right] \quad 5.2 \mathrm{k} \Omega$

<HIGH PRESSURE SENSOR>

- Comparing the High Pressure Sensor Measurement and Gauge Pressure

By configuring the digital display setting switch (SW1) as shown in the figure below, the pressure as measured by the high pressure sensor appears on the LED1 on the control board.

(1) While the outdoor unit is stopped, compare the gauge pressure and the pressure displayed on self-diagnosis LED1, 2.

1) When the gauge pressure is between 0 and 14 PSIG [0.098 MPaG], internal pressure is caused due to gas leak.
2) When the pressure displayed on self-diagnosis LED1, 2 is between $14 \mathrm{PSIG}[0.098 \mathrm{MPaG}]$, the connector may be defective or be disconnected. Check the connector and go to (4).
3) When the pressure displayed on self-diagnosis LED1, 2 exceeds 725 PSIG [5.0 MPaG], go to (3).
4) If other than 1), 2) or 3), compare the pressures while the sensor is running. Go to (2).
(2) Compare the gauge pressure and the pressure displayed on self-diagnosis LED1,2 after 15 minutes have passed since the start of operation. (Compare them by PSIG [MPaG] unit.)
5) When the difference between both pressures is within $36 \mathrm{PSIG}[0.25 \mathrm{MPaG}]$, both the high pressure sensor and the control board are normal.
6) When the difference between both pressures exceeds 36 PSIG [0.25 MPaG], the high pressure sensor has a problem. (performance deterioration)
7) When the pressure displayed on self-diagnosis LED1, 2 does not change, the high pressure sensor has a problem.
(3) Remove the high pressure sensor from the control board to check the pressure on the self-diagnosis LED1, 2.
8) When the pressure displayed on self-diagnosis LED1, 2 is between 0 and 14 PSIG [0.098 MPaG], the high pressure sensor has a problem.
9) When the pressure displayed on self-diagnosis LED1, 2 is approximately 725 PSIG [5.0 MPaG], the control board has a problem.
(4) Remove the high pressure sensor from the control board, and short-circuit between the pin 2 and pin 3 connectors (63 HS) to check the pressure with self-diagnosis LED1, 2.
10) When the pressure displayed on the self-diagnosis LED1, 2 exceeds $725 \mathrm{PSIG}[5.0 \mathrm{MPaG}$], the high pressure sensor has a problem.
11) If other than 1), the control board has a problem.

- High Pressure Sensor Configuration (63HS)

The high pressure sensor consists of the circuit shown in the figure below. If $5 \mathrm{~V} D C$ is applied between the white and the black wires, voltage corresponding to the pressure between the blue and the black wires will be output, and the value of this voltage will be converted by the microcomputer. The output voltage is 0.078 V per $14 \mathrm{PSIG}[0.098 \mathrm{MPaG}]$.
Note:
The pressure sensor on the body side is designed to connect to the connector. The connector pin number on the body side is different from that on the control board side.

	Body side	Control board side
Vcc	Pin 1	Pin 3
Vout	Pin 2	Pin 2
GND	Pin 3	Pin 1

<LOW PRESSURE SENSOR>

- Comparing the Low Pressure Sensor Measurement and Gauge Pressure

By configuring the digital display setting switch (SW1) as shown in the figure below, the pressure as measured by the low pressure sensor appears on the LED1 on the control board.

SW1

\square The figure at left shows that the switches 1 through 4 are set to ON and 5 through 8 are set to OFF.
(1) While the outdoor unit is stopped, compare the gauge pressure and the pressure displayed on self-diagnosis LED1, 2.

1) When the gauge pressure is between 0 and 14 PSIG [0.098 MPaG], internal pressure is caused due to gas leak.
2) When the pressure displayed on self-diagnosis LED1, 2 is between 0 and 14 PSIG [0.098 MPaG], the connector may be defective or be disconnected. Check the connector and go to (4).
3) When the outdoor temperature is $86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$ or less, and the pressure displayed on self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], go to (3).
When the outdoor temperature exceeds $86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$, and the pressure displayed on self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], go to (5).
4) If other than 1), 2) or 3), compare the pressures while the sensor is running. Go to (2).
(2) Compare the gauge pressure and the pressure displayed on self-diagnosis LED1, 2 after 15 minutes have passed since the start of operation. (Com pare them by PSIG [MPaG] unit.)
5) When the difference between both pressures is within $29 \mathrm{PSIG}[0.2 \mathrm{MPaG}]$, both the low pressure sensor and the control board arenormal
6) When the difference between both pressures exceeds $29 \mathrm{PSIG}[0.2 \mathrm{MPaG}]$, the low pressure sensor has a problem. (performance deterioration)
7) When the pressure displayed on the self-diagnosis LED1, 2 does not change, the low pressure sensor has a problem.
(3) Remove the low pressure sensor from the control board to check the pressure with the self-diagnosis LED1, 2 display.
8) When the pressure displayed on the self-diagnosis LED1,2 is between 0 and 14 PSIG [0.098 MPaG], the low pressure sensor has a problem.
9) When the pressure displayed on self-diagnosis LED1, 2 is approximately 247 PSIG [1.7 MPaG], the control board has a problem.
(4) Remove the low pressure sensor from the control board, and short-circuit between the pin 2 and pin 3 connectors (63LS) to check the pressure with the self-diagnosis LED1, 2.
10) When the pressure displayed on the self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], the low pressure sensor has a problem.
11) If other than 1), the control board has a problem.
(5) Remove the high pressure sensor (63HS) from the control board, and insert it into the connector for the low pressure sensor (63LS) to check the pressure with the self-diagnosis LED1, 2.
12) When the pressure displayed on the self-diagnosis LED1, 2 exceeds 247 PSIG [1.7 MPaG], the control board has a problem.
13) If other than 1), go to (2).

- Low Pressure Sensor Configuration (63LS)

The low pressure sensor consists of the circuit shown in the figure below. If 5 V DC is applied between the red and the black wires, voltage corresponding to the pressure between the white and the black wires will be output, and the value of this voltage will be converted by the microcomputer. The output voltage is 0.173 V per $14 \mathrm{PSIG}[0.098 \mathrm{MPaG}]$

Note:
The pressure sensor on the body side is designed to connect to the connector. The connector pin number on the body side is different from that on the control board side.

	Body side	Control board side
Vcc	Pin 1	Pin 3
Vout	Pin 2	Pin 2
GND	Pin 3	Pin 1

(3)-(1) : 5 V (DC)
(2)-(1) : Output Vout (DC)

8-9. TEST POINT DIAGRAM
 Outdoor multi controller circuit board PUMY-P60NKMU1
 PUMY-P60NKMU1-BS

Outdoor power circuit board PUMY-P60NKMU1 PUMY-P60NKMU1-BS

M-NET power circuit board PUMY-P60NKMU1

PUMY-P60NKMU1-BS

No.	SW1	Display mode	Display on the LED1, 2 (display data)								Notes
	12345678		1	2	3	4	5	6	7	8	
52	00101100	Outdoor LEV-A opening pulse	0-2000 (pulse)								Display of opening pulse of outdoor LEV
53	10101100	Outdoor LEV-A opening pulse abnormality delay									
54	01101100	Outdoor LEV-A opening pulse abnormality									
55	11101100	Outdoor LEV-B opening pulse									
56	00011100	Outdoor LEV-B opening pulse abnormality delay									
57	10011100	Outdoor LEV-B opening pulse abnormality									
58	01011100	63LS (Low pressure)	-99.9-999.9 (PSIG)								Display of data from sensor and thermistor
59	11011100	63LS abnormality delay	-99.9-999.9 (PSIG)								
60	00111100	63 LS abnormality									
61	10111100	TH2 (Hic pipe)	-99.9-999.9 (${ }^{\circ} \mathrm{F}$)								
62	01111100	TH2(HC) abnormality delay	-99.9-999.9 (${ }^{\circ} \mathrm{F}$)								
63	11111100	TH2 (HC) abnormality									
64	00000010	Operational frequency	0-255 (Hz)								Display of actual operating frequency
65	10000010	Target frequency	0-255 (Hz)								Display of target frequency
66	01000010	Outdoor fan control step number	0-15								Display of number of outdoor fan control steps (target)
69	10100010	IC1 LEV Opening pulse	0-2000 (pulse)								Display of opening pulse of indoor LEV
70	01100010	IC2 LEV Opening pulse									
71	11100010	IC3 LEV Opening pulse									
72	00010010	IC4 LEV Opening pulse									
73	10010010	IC5 LEV Opening pulse									
74	01010010	High pressure sensor (Pd)	-99.9-999.9 (PSIG)								Display detected data of outdoor unit sensors and thermistors
75	11010010	TH4(Compressor)(Td) data	-99.9-999.9 $\left(^{\circ} \mathrm{F}\right.$)								
76	00110010	TH6(Suction pipe)(ET) data									
77	10110010	TH7(Ambient) data									
78	01110010	TH3(Outioor liquid pipe) data									
80	00001010	TH8(Heat sink) data									
81	10001010	IC1 TH23 (Gas)	$-99.9-999.9\left({ }^{\circ} \mathrm{F}\right)$(When indoor unit is not connected, it is displayed as 0 .)								Display detected data of indoor unit thermistor
82	01001010	IC2 TH23 (Gas)									
83	11001010	IC3 TH23 (Gas)									
84	00101010	IC4 TH23 (Gas)									
85	10101010	IC5 TH23 (Gas)									

No.	SW1	Display mode	Display on the LED1, 2 (display data)								Notes
	12345678		1	2	3	4	5	6	7	8	
128	00000001	Actual frequency of abnormality delay	0-255 (Hz)								Display of actual frquency at time of abnormality delay
129	10110001	Fan step number at time of abnormality delay	0-15								Display of fan step number at time of abnormality delay
131	11000001	$\begin{array}{\|c\|c\|} \hline \text { IC1 LEV opening pulse } \\ \text { abnormality delay } \\ \hline \end{array}$	0-2000 (pulse)								Delay of opening pulse of indoor LEV at time of abnormality delay
132	00100001	IC2 LEV opening pulse abnormality delay abnormaity delay									
133	10100001	IC3 LEV opening pulse abnormality delay									
134	01100001	$\begin{array}{\|c\|} \hline \text { IC4 LEV opening pulse } \\ \text { abnormality delay } \\ \hline \end{array}$									
135	11100001	abnormality delay IC5 LEV opening pulse abnormality delay									
136	00010001	High pressure sensor data at time of abnormality delay kgf/cm2	-99.9-999.9 (PSIG)								Display of data from High pressure sensor, all thermistors, and SC/SH a time of abnormality delay
137	10010001	TH4 (Compressor) sensor data at time of abnormality delay ${ }^{\circ} \mathrm{C}$	-99.9-999.9 ${ }^{(}{ }^{\circ} \mathrm{F}$)								
138	01010001	TH6 (Suction pipe) sensor data at time of abnormality delay ${ }^{\circ} \mathrm{C}$									
139	11010001	TH3 (Outdoor liquid pipe) sensor data at time of abnormality delay ${ }^{\circ} \mathrm{C}$									
140	00110001	$\begin{array}{\|l\|} \hline \text { TH8 (Heat sink) sensor data at } \\ \text { time of abnomality delay }{ }^{\circ} \mathrm{C} \\ \hline \end{array}$									
141	10110001	$\begin{aligned} & \text { OC SC (cooling) at time of }_{\text {abnormality delay }{ }^{\circ} \mathrm{C}} \end{aligned}$	-99.9-999.9(${ }^{\circ} \mathrm{C}$) During heating: subcool (SC) During cooling; superheat (SH) (Fixed to "0" during cooling operation)								
142	01110001	IC1 SCISH at time of									
143	11110001	IC2 SCISH a t time of abnormality delay ${ }^{\circ} \mathrm{C}$									
144	00001001	IC3 SC/SH at time of abnormality delay ${ }^{\circ} \mathrm{C}$									
145	10001001	IC4 SC/SH at time of abnormality delay ${ }^{\circ} \mathrm{C}$									
146	01001001	IC5 SC/SH at time of abnormality delay ${ }^{\circ} \mathrm{C}$									
147	11001001	IC9 SCISH a t time of abnormality delay ${ }^{\circ} \mathrm{C}$									
148	00100001	IC10 SC/SH at time of abnormality delay ${ }^{\circ} \mathrm{C}$									
149	10101001	IC11 SCISH at time of abnormality delay ${ }^{\circ} \mathrm{C}$									
150	01101001	IC12 SC/SH at time of abnormality delay ${ }^{\circ} \mathrm{C}$									

This chapter provides an introduction to electrical wiring for the CITY MULTI-S series, together with notes concerning power wiring, wiring for control (transmission wires and remote controller wires), and the frequency converter.

9-1. OVERVIEW OF POWER WIRING

(1) Use a separate power supply for the outdoor unit and indoor unit.
(2) Bear in mind ambient conditions (ambient temperature, direct sunlight, rain water,etc.) when proceeding with the wiring and connections.
(3) The wire size is the minimum value for metal conduit wiring. The power cord size should be 1 rank thicker consideration of voltage drops. Make sure the power-supply voltage does not drop more than 10%.
(4) Specific wiring requirements should adhere to the wiring regulations of the region.
(5) Power supply cords of parts of appliances for outdoor use shall not be lighter than polychloroprene sheathed flexible cord (design 60245 IEC57). For example, use wiring such as YZW.
(6) Install an earth longer than other cables.

4 Warning:
Be sure to use specified wires to connect so that no external force is imparted to terminal connections. If connections are not fixed firmly, it may cause heating or fire.
Be sure to use the appropriate type of overcurrent protection switch. Note that generated overcurrent may include some amount of direct current.
\triangle Caution:
Some installation site may require attachment of an earth leakage breaker. If no earth leakage breaker is installed, it may cause an electric shock.
Do not use anything other than breaker and fuse with correct capacity. Using fuse and wire or copper wire with too large capacity may cause a malfunction of unit or fire.
Be sure to install N-Line. Without N-Line, it could cause damage to the unit.

9-2. WIRING OF MAIN POWER SUPPLY AND EQUIPMENT CAPACITY

9-2-1. Wiring diagram for main power supply

-Schematic Drawing of Wiring

9-2-2. Cross section area of Wire for Main Power and ON/OFF capacities PUMY-P60NKMU1 PUMY-P60NKMU1-BS

Thickness of Wire for Main Power Supply and On/Off Capacities

Model		Power Supply	Minimum Wire Thickness (AWG [mm²])		Breaker for Wiring*1	Breaker for Current Leakage	Minimum circuit ampacity	Maximum rating of over current protector device	
		Main Cable*2	Ground						
Outdoor Unit	P60		208/230 VAC, 60 Hz	AWG8 [8.4]	AWG8 [8.4]	40 A	40 A 30 mA 0.1 sec . or less	36 A	42 A
Indoor Unit		208/230 VAC, 60 Hz	Refer to installation manual of indoor unit.						

*1. A breaker with at least 3.0 mm [$1 / 8 \mathrm{inch}]$ contact separation in each poles shall be provided. Use non-fuse breaker (NF) or earth leakage breaker (NV).
*2. Use copper supply wires. Use the electric wires over the rating voltage 300 V .

Total operating current of the indoor unit	Minimum wire thickness (AWG [mm²])			Ground-fault interruper *1	Local switch (A)		Breaker for wiring (NFB)
	Main Cable	Branch	Ground		Capacity	Fuse	
F0 = 15 A or less *2	14/2.1	14/2.1	2.1/14	15 A current sensitivity *3	15	15	15
F0 = 20 A or less *2	12/3.3	12/3.3	12/3.3	20 A current sensitivity *3	20	20	20
F0 $=30 \mathrm{~A}$ or less *2	10/5.5	10/5.5	10/5.3	30 A current sensitivity *3	30	30	30

Apply to IEC61000-3-3 about max. permissive system impedance.
*1 The Ground-fault interrupter should support inverter circuit.
The Ground-fault interrupter should combine using of local switch or wiring breaker.
*2 Please take the larger of F1 or F2 as the value for F0.
F1 $=$ Total operating maximum current of the indoor units $\times 1.2$
$\mathrm{F} 2=\{\mathrm{V} 1 \times($ Quantity of Type1)/C $\}+\{\mathrm{V} 1 \times($ Quantity of Type2) $/ \mathrm{C}\}+\{\mathrm{V} 1 \times($ Quantity of Type3) $/ \mathrm{C}\}+\{\mathrm{V} 1 \times($ Quantity of Others) $/ \mathrm{C}\}$

Indoor unit		V1	V2
Type 1	PKFY-P-NHMU, PKFY-P•NKMU, PEFY-P•NMSU, PLFY-P•NEMU, PLFY-EP•NEMU, PMFY-P•NBMU, PCFY-P•NKMU	19.8	2.4
Type 2	PEFY-P•NMAU, PVFY-P•NAMU	38.0	1.6
Type 3	PKFY-P•NBMU, PLFY-P•NCMU	3.5	2.4
Others	PFFY-P•NEMU, PFFY-P•NRMU, PDFY-P•NMU, PEFY-P•NMHU	0.0	0.0

C : Multiple of tripping current at tripping time 0.01s
Please pick up " C " from the tripping characteristic of the breaker.
<Example of "F2" calculation>

* Condition PEFY-NMSU $\times 4+$ PEFY-NMAU $\times 1, \mathrm{C}=8$ (refer to right sample chart)

F2 $=19.8 \times 4 / 8+38 \times 1 / 8$
$=14.65$
$\rightarrow 16$ A breaker (Tripping current $=8 \times 16 \mathrm{~A}$ at 0.01 s)

* 3 Current sensitivity is calculated using the following formula.

G1 $=\mathrm{V} 2 \times$ (Quantity of Type1) $+\mathrm{V} 2 \times$ (Quantity of Type2) $+\mathrm{V} 2 \times$ (Quantity of Type3) $+\mathrm{V} 2 \times$ (Quantity of Others) $+\mathrm{V} 3 \times($ Wire length $[\mathrm{km}])$

G1	Current sensitivity
30 or less	30 mA 0.1 sec or less
100 or less	100 mA 0.1 sec or less

Wire thickness (AWG/mm ${ }^{2}$)	V3
$14 / 2.1$	48
$12 / 3.3$	56
$10 / 5.3$	66

1. Use a separate power supply for the outdoor unit and indoor unit.
2. Bear in mind ambient conditions (ambient temperature, direct sunlight, rain water,etc.) when proceeding with the wiring and connections.
3. The wire size is the minimum value for metal conduit wiring. The power cord size should be 1 rank thicker consideration of voltage drops. Make sure the power-supply voltage does not drop more than 10%.
4. Specific wiring requirements should adhere to the wiring regulations of the region.
5. Power supply cords of parts of appliances for outdoor use shall not be lighter than polychloroprene sheathed flexible cord (design 60245 IEC57). For example, use wiring such as YZW.
6. Install an earth longer than other cables.

9-3. DESIGN FOR CONTROL WIRING

Please note that the types and numbers of control wires needed by the CITY MULTI-S series depend on the remote controllers and whether they are linked with the system or not.

9-3-1. Selection number of control wires

		M-NET remote controller
	Use	Remote controller used in system control operations. - Group operation involving different refrigerant systems. - Linked operation with upper control system.
Remote controller \rightarrow indoor unit		2-core wire (non-polar)
	Wires connecting \rightarrow indoor units	
	Wires connecting \rightarrow indoor units with outdoor unit	
	Wires connecting \rightarrow outdoor units	

9-4. WIRING TRANSMISSION CABLES

9-4-1. Types of control cables

1. Wiring transmission cables

- Types of transmission cables: Shielding wire CVVS, CPEVS or MVVS
- Cable diameter: More than AWG 16 [1.25 mm²]
- Maximum wiring length: Within 656 ft [200 m]

2. M-NET Remote control cables

Kind of remote control cable	Shielding wire (2-core) CVVS, CPEVS or MVVS
Cable diameter	AWG 20 to AWG $16\left[0.5\right.$ to $\left.1.25 \mathrm{~mm}^{2}\right]$
Remarks	When 10 m is exceeded, use a cable with the same specifications as transmission line wiring.

3. MA Remote control cables

Kind of remote control cable	Sheathed 2-core cable (unshielded) CVV
Cable diameter	AWG 22 to AWG $16\left[0.3\right.$ to $\left.1.25 \mathrm{~mm}^{2}\right]$ (AWG 18 to AWG $16\left[0.75\right.$ to $\left.\left.1.25 \mathrm{~mm}^{2}\right]\right)^{*}$
Remarks	Within $656 \mathrm{ft}[200 \mathrm{~m}]$

* Connected with simple remote controller.

9-4-2. Wiring examples

- Controller name, symbol and allowable number of controllers.

Name	Symbol	Allowable number of controllers	
Outdoor unit controller	OC	-	
Indoor unit controller	M-IC	PUMY-P60	1 to 12 units per 1 OC
Remote controller	RC	M-NET RC	Maximum of 12 controllers for 1 OC
		MA-RC	Maximum of 2 per group

[^0]
9-5. SYSTEM SWITCH SETTING

In order to identify the destinations of signals to the outdoor units, indoor units, and remote controller of the MULTI-S series, each microprocessor must be assigned an identification number (address). The addresses of outdoor units, indoor units, and remote controller must be set using their settings switches. Please consult the installation manual that comes with each unit for detailed information on setting procedures.

9-6. EXAMPLE EXTERNAL WIRING DIAGRAM FOR A BASIC SYSTEM

- Example of system when using a M-NET controller

9-7. METHOD FOR OBTAINING ELECTRICAL CHARACTERISTICS WHEN A CAPACITY AGREEMENT IS TO BE SIGNED WITH AN ELECTRIC POWER COMPANY

The electrical characteristics of connected indoor unit system for air conditioning systems, including the MULTI-S series, depend on the arrangement of the indoor and outdoor units.
First read the data on the selected indoor and outdoor units and then use the following formulas to calculate the electrical characteristics before applying for a capacity agreement with the local electric power company.

9-7-1. Obtaining the electrical characteristics of a CITY MULTI-S series system
(1) Procedure for obtaining total power consumption

	Page numbers in this technical manual	Power consumption
Total power consumption of each indoor unit	See the technical manual of each indoor unit	(1)
Power consumption of outdoor unit*	Standard capacity diagram- Refer to 4-3.	(2)
Total power consumption of system	See the technical manual of each indoor unit	(1)+(2) <kW>

*The power consumption of the outdoor unit will vary depending on the total capacity of the selected indoor units.
(2) Method of obtaining total current

	Page numbers in this technical manual	Subtotal
Total current through each indoor unit	See the technical manual of each indoor unit	(1)
Current through outdoor unit*	Standard capacity diagram- Refer to 4-3.	(2)
Total current through system	See the technical manual of each indoor unit	(1)+(2) <A>

The current through the outdoor unit will vary depending on the total capacity of the selected indoor units.
(3) Method of obtaining system power factor

Use the following formula and the total power and current obtained in parts (1) and (2) on the above tables to calculate the system power factor.

$$
\text { System power factor }=\frac{(\text { Total system power consumption })}{(\text { Total system current } \times \text { voltage })} \times 100 \%
$$

9-7-2. Applying to an electric power company for power and total current
Calculations should be performed separately for heating and cooling employing the same methods; use the largest resulting value in your application to the electric power company.

10-1. REFRIGERANT PIPING SYSTEM

10-2. PRECAUTIONS AGAINST REFRIGERANT LEAKAGE

10-2-1. Introduction

R410A refrigerant of this air conditioner is non-toxic and non-flammable but leaking of large amount from an indoor unit into the room where the unit is installed may be deleterious. To prevent possible injury, the rooms should be large enough to keep the R410A concentration specified by ISO 5149-1 as follows.
Maximum concentration
Maximum refrigerant concentration of R410A of a room
is $0.44 \mathrm{~kg} / \mathrm{m}^{3}\left[0.027 \mathrm{lbs} / \mathrm{ft}^{3}\right]$ accordance with ISO $5149-1$.
To facilitate calculation, the maximum concentration is
expressed in units of $\mathrm{kg} / \mathrm{m}^{3}\left[\mathrm{lbs} / \mathrm{ft}^{3}\right]$ ($\mathrm{kg}[\mathrm{lbs}]$ of R 410 A
per $\mathrm{m}^{3}\left[\mathrm{ft}^{3}\right]$)
Maximum concentration of $\mathrm{R} 410 \mathrm{~A}: 0.027 \mathrm{lbs} / \mathrm{ft}^{3}\left[0.44 \mathrm{~kg} / \mathrm{m}^{3}\right]$
(ISO $5149-1)$

10-2-2. Confirming procedure of R410A concentration

Follow (1) to (3) to confirm the R410A concentration and take appropriate treatment, if necessary.
(1) Calculate total refrigerant amount by each refrigerant system. Total refrigerant amount is precharged refrigerant at ex-factory plus additional charged amount at field installation.

Note:

When single refrigeration system consists of several independent refrigeration circuit, figure out the total refrigerant amount by each independent refrigerant circuit.
(2) Calculate room volumes $\left(\mathrm{m}^{3}\right)$ and find the room with the smallest volume

The part with \qquad represents the room with the smallest volume.

(c) If the smallest room has mechanical ventilation apparatus that is linked to a household gas detection and alarm device, the calculations should be performed for the second smallest room.

(3) Use the results of calculations (1) and (2) to calculate the refrigerant concentration:

[^1]If the calculation results do not exceed the maximum concentration, perform the same calculations for the larger second and third room, etc., until it has been determined that nowhere the maximum concentration will be exceeded.

Note: Turn OFF the power supply before disassembly.

OPERATING PROCEDURE	PHOTOS
1. Removing the service panel and top panel (1) Remove 3 service panel fixing screws (5×12) and slide the hook on the right downward to remove the service panel. (2) Remove screws (3 for front, 3 for rear/ 5×12) of the top panel and remove it.	
2. Removing the fan motor (MF1, MF2) (1) Remove the service panel. (See Photo 1) (2) Remove 4 fan grille fixing screws (5×12) to detach the fan grille. (See Photo 1) (3) Remove a nut (for right handed screw of M6) to detach the propeller. (See Photo 2.) (4) Disconnect the connectors, CNF1 and CNF2 on multi controller board in electrical parts box. (5) Remove 4 fan motor fixing screws (5×20) to detach the fan motor. (See Photo 3) Note: Tighten the propeller fan with a torque of $5.7 \pm 0.3 \mathrm{~N} \cdot \mathrm{~m}$ $[4.2 \pm 0.2 \mathrm{ft}=\mathrm{lbs}]$	Photo 3 Fan motor fixing screws
3. Removing the electrical parts box (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connecting wire from terminal block.(See Photo 5) (4) Remove all the following connectors from outdoor multi controller circuit board; <Diagram symbol in the connector housing> - Fan motor (CNF1, CNF2) - Thermistor <HIC pipe> (TH2) - Thermistor <Outdoor liquid pipe> (TH3) - Thermistor <Compressor> (TH4) - Thermistor <Suction pipe/Ambient, Outdoor> (TH7/6) - High pressure switch (63H) - High pressure sensor (63HS) - Low pressure sensor (63LS) - 4-way valve (21S4) - Bypass valve (SV1) - Electronic expansion valve (CNLVA/CNLVB) Pull out the disconnected wire from the electrical parts box. (5) Remove the terminal cover and disconnect the compressor lead wire. Note: The terminal cover can be easily removed by using a blade of flathead screwdriver. Figure 1	Photo 4

From the previous page.

OPERATING PROCEDURE	PHOTOS
(6) Remove 2 electrical parts box fixing screws (4×10) then detach the electrical parts box by pulling it upward. The electrical parts box is fixed with 2 hooks on the left and 1 hook on the right.	Photo 5
4. Removing the thermistor <Suction pipe> (TH6) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connectors, TH7/6 (red), on the multi controller circuit board in the electrical parts box. (4) Loosen the wire clamps on the back of electrical parts box. (5) Pull out the thermistor <Suction pipe> (TH6) from the sensor holder. Note: When replacing thermistor <Suction pipe> (TH6), replace it together with thermistor <Ambient> (TH7) since they are combined together. Refer to procedure No. 5 below to remove thermistor <Ambient> (TH7).	Photo 6 Photo 7
5. Removing the thermistor <Ambient> (TH7) (1) Remove the service panel. (See Photo 1) (2) Remove the top panel. (See Photo 1) (3) Disconnect the connector TH7/6 (red) on the multi controller circuit board in the electrical parts box. (4) Loosen the wire clamps on top of the electrical parts box. (See Photo 6.) (5) Pull out the thermistor <Ambient> (TH7) from the sensor holder. Note: When replacing thermistor <Ambient> (TH7), replace it together with thermistor <Suction pipe> (TH6), since they are combined together. Refer to procedure No. 4 above to remove thermistor <Suction pipe> (TH6).	Photo 8 Lead wire of thermistor <Ambient> (TH7)

OPERATING PROCEDURE

6. Removing the thermistors

Thermistor <HIC> (TH2) and thermistor <Compressor> (TH4)
(1) Remove the service panel. (See Photo 1)
(2) Disconnect the connectors, TH2 (black) and TH4 (white), on the multi controller board in the electrical parts box.
(3) Pull out the thermistor <HIC> (TH2) and thermistor <Compressor> (TH4) from the sensor holder. (See Photo 9-1)

Thermistor <Outdoor pipe> (TH3)
(1) Remove the service panel. (See Photo 1)
(2) Disconnect the connector, TH3 (white), on the Multi controller board in the electrical parts box.
(3) Loosen the clamp for the lead wire on the bottom of the electrical parts box.
(4) Pull out the thermistor <Outdoor pipe> (TH3) from the sensor holder. (See Photo 9-2)
Pa

7. Removing the 4 -way valve coil (21S4)

(1) Remove the service panel. (See Photo 1)
[Removing the 4-way valve coil]
(2) Remove 4 -way valve coil fixing screw ($\mathrm{M} 4 \times 6$).
(3) Remove the 4 -way valve coil by sliding the coil toward you.
(4) Disconnect the connector 21S4 (green) on the multi controller circuit board in the electrical parts box.

8. Removing the 4-way valve

(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box (See photo 5)
(4) Remove 3 valve bed fixing screws (4×10) and 4 ball valve and stop valve fixing screws (5×16), then remove the valve bed. (See Photo 4 and 7)
(5) Remove 2 cover panel fixing screws (5×12), then slide the cover panel (front) upward to remove it. (The cover panel (front) is fixed to the cover panel (rear) with a hook on the rear side. (See Photo 4)
(6) Remove the cover panel (rear) fixing screws (2 for right side and 2 for rear/ 5×12), then slide the cover panel (rear) upward to remove it. (See Photo 4) (The cover panel (rear) is fixed to the side panel (R) with 2 screws.)
(7) Remove 3 side panel (R) fixing screws (5×12) in the rear of the unit, then slide the side panel (R) upward to remove it. (The side panel (R) is fixed to the side plate with hooks on the rear side.)
(8) Remove the 4-way valve coil. (See Photo 10)
(9) Recover refrigerant.
(10) Remove the welded part of 4-way valve.

Note 1: Recover refrigerant without spreading it in the air. Note 2: The welded part can be removed easily by removing the right side panel.
Note 3: When installing the four-way valve, cover it with a wet cloth to prevent it from heating $248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$ or more, then braze the pipes so that the inside of pipes are not oxidized.

Photo 9-2

Thermistor <Outdoor pipe> (TH3)

Photo 10

OPERATING PROCEDURE

9. Removing bypass valve coil (SV1) and bypass valve
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the bypass valve coil fixing screw (M4 $\times 6$).
(7) Remove the bypass valve coil by sliding the coil upward.
(8) Disconnect the connector SV1 (gray) on the multi controller circuit board in the electrical parts box.
(9) Remove the electrical parts box. (See Photo 5)
(10) Recover refrigerant.
(11) Remove the welded part of bypass valve.

Refer to the notes below.
10. Removing the high pressure switch (63H) and high pressure sensor (63HS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Pull out the lead wire of high pressure switch and high pressure sensor.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of high pressure switch and high pressure sensor.

Refer to the notes below.
11. Removing the low pressure sensor (63LS)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Disconnect the connector 63LS (blue) on the multi controller circuit board in the electrical parts box.
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of low pressure sensor.

Refer to the notes below.
12. Removing electronic expansion valve (LEV-A, LEV-B)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the cover panel (front). (Refer to procedure 8(5))
(4) Remove the cover panel (rear) (Refer to procedure 8(6))
(5) Remove the side panel (R). (Refer to procedure 8 (7))
(6) Remove the electronic expansion valve coil. (See Photo 12)
(7) Remove the electrical parts box. (See Photo 5)
(8) Recover refrigerant.
(9) Remove the welded part of electronic expansion valve.

Notes:

1. Recover refrigerant without spreading it in the air. 2. The welded part can be removed easily by removing the right side panel.
2. When installing the following parts, cover it with a wet cloth to prevent it from heating as the temperature below, then braze the pipes so that the inside of pipes are not oxidized;

- Bypass valve (procedure 9), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right]$ or more
- High pressure switch and high pressure sensor (procedure 10), $212^{\circ} \mathrm{F}$ [$100^{\circ} \mathrm{C}$] or more
- Low pressure sensor (procedure 11), $100^{\circ} \mathrm{C}$ or more
- LEV (procedure 12), $248^{\circ} \mathrm{F}\left[120^{\circ} \mathrm{C}\right]$ or more

OPERATING PROCEDURE

13. Removing the reactor (DCL)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box (See photo 5)
(4) Remove 4 screws for reactor (4×10) to remove the reactor. (See Figure 1)
14. Removing the compressor (MC)
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box. (See Photo 5)
(4) Remove the valve bed. (Refer to procedure 8 (4))
(5) Remove the cover panel (front). (Refer to procedure 8(5))
(6) Remove the cover panel (rear) (Refer to procedure 8(6))
(7) Remove the side panel (R). (Refer to procedure 8 (7))
(8) Remove front panel fixing screws, $5(5 \times 12)$ and $2(4 \times 10)$ and remove the front panel. (See Photo 4)
(9) Remove 3 separator fixing screws (4×10) and remove the separator. (See Figure 3)
(10) Recover refrigerant.
(11) Remove the 3 compressor fixing nuts using spanner or adjustable wrench.
(12) Remove the welded pipe of motor for compressor inlet and outlet and then remove the compressor.

Note: Recover refrigerant without spreading it in the air.

Figure 3

PHOTOS \& ILLUSTRATION

Figure 2

Photo 13

Photo 14
Compressor

OPERATING PROCEDURE
15. Removing the accumulator
(1) Remove the service panel. (See Photo 1)
(2) Remove the top panel. (See Photo 1)
(3) Remove the electrical parts box. (See Photo 5)
(4) Remove the valve bed. (See procedure 8 (4))
(5) Remove the cover panel (front). (Refer to procedure 8(5))
(6) Remove the cover panel (rear) (Refer to procedure 8(6))
(7) Remove the side panel (R). (Refer to procedure 8 (7))
(8) Recover refrigerant.
(9) Remove 2 welded pipes of accumulator inlet and outlet.
(10) Remove 2 accumulator leg fixing screws (4 \times 10). (See
Photo 16)
Note: Recover refrigerant without spreading it in the air.

[ITYIIIILII

MITSUBISH ELECTRIC CORPORATION

[^0]: Note that the number of connectable units may be limited by some conditions such as an indoor unit's capacity or each unit's equivalent power consumption. (Refer to DATA BOOK.)

[^1]: Total refrigerant in the refrigerating unit (lbs [kg])
 The smallest room in which an indoor unit has been installed ($\mathrm{ft}^{3}\left[\mathrm{~m}^{3}\right]$)

 Maximum concentration of R410A: $0.027 \mathrm{lbs} / \mathrm{ft}^{3}$ [$\left.0.44 \mathrm{~kg} / \mathrm{m}^{3}\right]$

