

# COMFORT AIR SOURCE HEAT PUMPS



# AIR SOURCE HEAT PUMPS FOR OUTDOOR INSTALLATION, FROM 41.2-226 kW









Mitsubishi Electric Sales Canada Inc.

4299 14th Avenue, Markham Ontario, L3R 0J2



# THE ECO-FRIENDLY SOLUTION FOR PERFECT COMFORT

## Air Source Heat Pumps with Scroll Compressors. From 41.2 to 226 kW

NX-N-G02 Air Source Heat Pump range with scroll compressors are designed for delivering the best efficiencies in comfort applications.

The new ranges are brilliantly engineered to integrate all the main hydronic and mechanic components inside the unit, providing installers the ideal plug & play solution for the HVAC plant.

Banks

Institutions

Condominium & Apartment Buildings

Intertek

COMFORT APPLICATIONS Hotels

Office buildings

- Museums
- Schools and Education Centres.
- Sport facilities

### PREMIUM EFFICIENCIES IN HEATING

# **OPERATING RANGE**

AHR CERTIFIED



K ► Key efficiency

Average values of product range, Rated in accordance with AHRI 550/590 & 551/591

### The performance in cooling mode surpasses the minimum efficiency requirement as set by ASHRAE 90.1.

**IPLV** 

4.80

This makes the unit the perfect solution for any project intended to meet stringent building energy efficiency certifications with the added benefit of providing Heat Pump heating to offset Greenhouse Gas Emissions.



### HEAT RECOVERY CONFIGURATIONS



02/03

Standard unit Unit without heat recovery.



A desuperheater on the compressor discharge line recovers approximately 20% of the unit's capacity while operating in cooling mode.

Suitable for DHW production or pre-heat, such as the integration of an existing boiler for very hot water production (over 55°C)

60°C





- Shopping centers

- NX-N-G02 Air source heat pumps UP TO

COP

3.16

COPr

3.12

# MITSUBISHI

### **INTEGRATED AUXILIARY HEAT SOURCE MANAGEMENT**

Auxiliary heat sources, such as conventional boilers, can be used to supplement or replace the Heat Pump capacity in order to meet the building heating load at lower outdoor temperatures.

#### NX-N-G02-U Minimizes the Work of the Auxiliary Source.

80

70

60

50

40

30

The Heat Pump produces hot water for space heating independently when the outside temperature allows the unit to meet the required system supply temperature, according to the Heat Pump operating envelope.

In very low outside temperature conditions and for domestic hot water production, the auxiliary heat source can work alongside the heat pump in order to meet the required thermal load.

Integrated controls can °C easily manage an auxiliary heat source for Integration with the Heat Pump or alternatively, heat source changeover based on a **Bivalence Temperature.** 





# Heating Load / Heating Capacity (kW) + 0 ΠŢ -8 Outdoor air temperature (°C) Heat pump Thermal Request Bivalent Point

#### MANAGER 3000+ SMART PLANT MANAGEMENT SYSTEM

Manager 3000+ is a plug-and-play plant room controller that can manage up to 8 NX-N units in a central plant and optimizes the overall performance of the system.



#### NIGHT MODE

Thanks to the night mode function, the unit lowers its sound emissions (-3 dB(A) with factory settings) leveraging reduced usage of its resources to continue providing excellent comfort during low load periods.

#### **ALL-IN-ONE SOLUTION** FOR EASY INSTALLATION



NX-N-G02 are all-in-one solutions, ready to be installed. The available integrated hydronic modules includes the pumps, and the main hydronic components, allowing simplified installation and reduced commissioning time.

#### **KIPlink THE KEYBOARD** IN YOUR POCKET

Automatic control of the unit from your mobile device (smartphone, tablet, notebook) using the MEHITS Mobile App (iOS/Android) just by scanning the QR code label placed on the front of the unit.



**AUTO-ADAPTIVE** DEFROST

#### Smart proprietary auto adaptive algorithms manage the defrosting cycles in the smartest way.

- Reduction in defrosting time
- Minimum impact on leaving water temperature
- Reduction of energy required for defrosting
- Increase of COP

### SILENT OPERATION AND **NO COMPROMISES IN EFFICIENCY**

The NX-N-G02 range has been designed for perfect environmental well-being. Thanks to a specific design optimized for the Canadian Climate, NX-N-G02 range achieves a lower sound level without sacrificing efficiency or performance.

compared to units with traditional defrost cycles.





# **TECHNOLOGICAL CHOICES**

# W3000+ CONTROL

## Management software designed and perfected fully in-house

- Proprietary settings for faster adaptive responses to different hydronic system dynamics
- Enhanced diagnostics thanks to the black box function and KIPlink
- Connectivity with the most commonly used BMS protocols and M-Net Mitsubishi Electric proprietary protocol (Opt.)

# Compact Keyboard



- Large LCD display and functional keys
- Quick and easy parameter consultation and adjustment by means of a multi-level menu
- KIPlink, the innovative Wi-Fi interface, is available as an option.

# **Highly Resistant Finned Coils**

# **Copper and Aluminum Tube & Fin Coils**

- Ideally designed to optimize airflow and heat transfer
- Protective coating available for harsh industrial and marine environments (Opt.)

# **TUBE & FIN COILS**

#### Cu/Al - Regular (std for NX-N-G02-U)

# Cu/Al - Pre-painted fins

- Fins treated with protective polyester resin paint. 1000 h of salt spray
- protection as per ASTM B117.
- Excellent resistance to UV rays.

# Cu/Al - Fin Guard Silver SB

- Polyurethane paint with metallic emulsion. 3000 h of salt spray protection
- as per ASTM B117. Excellent resistance
- to UV rays.

NX-N-G02-U 352P



+14% COP

Reversible unit, air source for outdoor installation



# SET POINT COMPENSATION

Dynamic control of the water supply temperature depending on the outdoor air temperature greatly increases the comfort and energy efficiency of the system.

Set Point Compensation works in both heating and cooling mode for increased energy savings year-round.





# NX-N-G02-U Range: The Ideal Solution For Forward-Looking Heating and Cooling Systems

# FANS

### High performing-axial fans:

- Different sizes and speeds to perfectly fit the requirements of each unit model
- > Speed control (DVV) based on refrigerant pressure.

# PLATE HEAT EXCHANGERS

Compact and robust, made of AISI 316 steel plates, copper-brazed.

- Low pressure drops
- Fully protected against ice formation
- Closed-cell neoprene external lining



# SCROLL COMPRESSORS

 Tandem configuration with a single refrigerant circuit for increased efficiency at part-load conditions



# HYDRONIC MODULE

The **fully integrated hydronic module** (opt.) includes the pumps, and all the main hydronic components, for the best **optimization of the installation space, time and costs**.



### Pumps

- Vertical In-line configuration
- ▶ 2-pole motor
- Single or twin pumps
- Low or high head (approx. 100 or 200 kPa).

### Terminals

- On/off control
- 1 or 2 external pumps
- 0-10V Variable Speed Pump Output

# **ACCESSORIES AND FURTHER OPTIONS**

## **KIPlink user interface**



#### An exclusive product of Mitsubishi Electric Hydronics & IT Cooling Systems.

Based on Wi-Fi technology, KIPlink is an option that allows one to operate on the unit directly from a mobile device (smartphone, tablet, or notebook) by simply scanning the QR code positioned on the unit.



# MAIN FEATURES



#### Easier on-site operation

Monitor each component while moving around the unit for maintenance operations. View and change all parameters with easy-tounderstand screenshots and dedicated tool tips. Get devoted "help" messages / for alarm reset and troubleshooting.



#### Real-time graphs and trends

Monitor the immediate labor status of the compressors, heat exchangers, cooling circuits, and pumps. View the real-time graphs of the key operating variable trends.

|     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - <b></b> | ······································ |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|
|     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         |                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                        |
|     | - 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1001100   |                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.000    | And a local division of the            |
|     | a 🚰 🚥 ana ana ana ana ana ana ana ana ana an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10011000  | and the second second                  |
| (c) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1417-1400 |                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                        |
|     | - Carlos - C |           |                                        |
|     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                        |
|     | - 20 The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1011000   |                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000    |                                        |
|     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100-000   |                                        |
|     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1011 000  |                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                        |

#### **Data logger function**

View history of events and use the filter for a simple search.

Enhance diagnostics with data and graphs of 10 minutes before and after each alarm. Download all the data for detailed analysis.

# FURTHER OPTIONS

A wide variety of additional mechanical and electrical options and accessories are available. Contact Mitsubishi Electric with your specific project requirements

| Set-point<br>adjustment |                             | <ul> <li>4-20 mA: Enables remote set-point adjustments (analog input).</li> <li>Double set-point: Enables the remote switch between 2 set-points (digital input).</li> <li>Set-point compensation in Heating and Cooling Modes: Automatic adjustment of the set-point on the basis of the outdoor temperature.</li> </ul>                                                                                                                                                                                                                                     |  |
|-------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Control<br>functions    |                             | Night mode: Limits the unit sound level reducing the usage of the resources. Sound power reduction (with factory settings): -3 dB(A).<br>U.L.C. User Limit Control: Controls a mixing valve (not included) to ensure a safe start-up and operation of the unit even in critical conditions.<br>Remote probe: Controls both the unit and pump activation based on the water temperature of the buffer tank or hydronic separator/decoupler.<br>Demand limit: Limits the unit's power absorption for safety reasons or in temporary situations (digital input). |  |
| Electrical              |                             | Compressor Power Factor Correction: The capacitors on the compressors' line increase the unit's power factor.<br>Soft-starter: Manages the inrush current enabling lower motor windings' mechanical wear, avoids voltage fluctuations in the main power feeds during startup and provides favorable sizing of the electrical system.                                                                                                                                                                                                                          |  |
| Connectivity            |                             | Serial card interface module to allow integration with BMS protocols:<br>Modbus / LonWorks / BACnet MS/TP / BACnet over IP / Konnex / Modbus TCP/IP/ SNMP<br>M-Net interface kit: Interface module to allow the integration of the unit with Mitsubishi Electric proprietary communication protocol M-Net.                                                                                                                                                                                                                                                    |  |
| 6/07                    | <b>VITSUBIS</b><br>ELECTRIC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

# EXTENDED WARRANTY AND TRAINING PROGRAM

# PROTECT YOUR HEAT PUMP FROM ANY RISK

The NX-N-G02-U units come with a standard warranty of one year for parts and compressors from the date of commissioning.

If the product is installed, commissioned, and maintained in accordance with the maintenance schedule by an Authorized Contractor, the standard warranty is extended to 5 years from the date of commissioning<sup>\*</sup>.

In order to become an Authorized Contractor, Contractors must successfully complete Mitsubishi Electric Sales Canada's complementary courses to get the knowledge and training to offer extended warranty protection and peace of mind.

For owners or contractors that do not have in-house service resources to maintain the equipment, Mitsubishi Electric Sales Canada has an extensive network of service providers to for all your project needs, who can provide you continued support throughout the extended warranty.

Contact your local sales representative for further details and training course dates.

**Conditions Apply:** For details see the warranty terms at www.Climaveneta.ca \* Maintenance plan provided by an authorized service contractor is required to validate the warranty.





| Energy Met             | er | Energy meter for BMS: Acquires electrical data and the power absorbed by the unit and sends them the BMS for energy metering (Modbu<br>Energy meter for W3000: The electrical data acquired is available directely on the unit's control.                                                                                                                                                                                                                                                                                                      | us RS485). |
|------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Refrigerant<br>circuit |    | Compressor suction and discharge valves: Installed for each compressor tandem or trio, the valves simplify maintenance activities.<br>The user can work on the isolated valve for periodic maintenance or replacement, without removing the refrigerant from the circuit.<br>Dual pressure relief valves with switch: One valve is isolated from the refrigerant circuit while the other is in service. The user can<br>work on the isolated valve for periodic maintenance or replacement, without removing the refrigerant from the circuit. |            |
| Structure              |    | Anti-intrusion grilles: Perimeter metal grilles to protect against the intrusion of solid bodies into the unit structure.<br>Spring or rubber type anti-vibration mountings: Reduce vibrations, keeping noise transmission to a minimum.                                                                                                                                                                                                                                                                                                       |            |
| Packing                |    | Standard or nylon packing: The unit is provided with plastic supports, with or without a protective nylon layer.<br>Container slides or packing: The unit is provided with metal slides to load it in a conrtainer, with or without a protective nylon layer.<br>Wooden cage packing: The unit is provided with a robust wooden cage, with or without a protective nylon layer.                                                                                                                                                                |            |





## NX-N-G02-U

Heat pump with 2 compressors, air source for outdoor installation, from 41 to 226 kW.





| NX-N-G02-U                   |            |         | 0152P    | 0182P    | 0202P    | 0252P    | 0262P    | 0302P    | 0402P    |
|------------------------------|------------|---------|----------|----------|----------|----------|----------|----------|----------|
| Power supply                 |            | V/ph/Hz | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 |
| PERFORMANCE                  |            |         |          |          |          |          |          |          |          |
| COOLING                      |            |         |          |          |          |          |          |          |          |
| Cooling Capacity             | (1)(2)(10) | kW      | 41.15    | 45.47    | 53.54    | 61.28    | 68.39    | 76.78    | 91.69    |
| Total Power Input            | (1)(2)(10) | kW      | 14.28    | 15.75    | 18.27    | 20.95    | 23.78    | 26.77    | 30.52    |
| COPr                         | (1)(2)(10) | kW/kW   | 2.881    | 2.880    | 2.923    | 2.919    | 2.874    | 2.866    | 3.007    |
| IPLV.SI REFERENCE            | (1)(2)(10) | kW/kW   | 4.740    | 4.700    | 4.680    | 4.690    | 4.740    | 4.800    | 4.700    |
| Rc (ASHRAE)                  |            | kg/kW   | 0.35     | 0.32     | 0.28     | 0.25     | 0.23     | 0.35     | 0.40     |
| HEATING ONLY                 |            |         |          |          |          |          |          |          |          |
| Total Heating Capacity       | (3)        | kW      | 48.84    | 53.71    | 60.78    | 70.76    | 76.77    | 89.76    | 106.1    |
| Total Power Input            | (3)        | kW      | 16.59    | 17.37    | 20.22    | 23.74    | 25.43    | 29.14    | 34.78    |
| COP                          | (3)        | kW/kW   | 2.940    | 3.086    | 3.010    | 2.987    | 3.024    | 3.086    | 3.049    |
| EXCHANGERS                   |            |         |          |          |          |          |          |          |          |
| HEAT EXCHANGER (PLANT) IN    |            | MODE    |          |          |          |          |          |          |          |
| Water Flow                   | (1)(2)     | l/s     | 1.789    | 1.977    | 2.328    | 2.664    | 2.973    | 3.338    | 3.986    |
| Heat Exchanger Pressure Drop | (1)(2)     | kPa     | 33.0     | 33.0     | 35.0     | 29.9     | 29.3     | 37.0     | 24.7     |
| HEAT EXCHANGER (PLANT) IN    | I HEATING  | MODE    |          |          |          |          |          |          |          |
| Water Flow                   | (3)        | l/s     | 2.108    | 2.318    | 2.623    | 3.054    | 3.313    | 3.873    | 4.580    |
| Heat Exchanger Pressure Drop | (3)        | kPa     | 45.8     | 45.4     | 44.4     | 39.3     | 36.4     | 49.8     | 32.6     |
| REFRIGERANT CIRCUIT          |            |         |          |          |          |          |          |          |          |
| No. Compressors              |            | N°      | 2        | 2        | 2        | 2        | 2        | 2        | 2        |
| No. Circuits                 |            | N°      | 1        | 1        | 1        | 1        | 1        | 1        | 1        |
| Refrigerant Charge           |            | kg      | 14.5     | 14.5     | 15.0     | 15.0     | 15.5     | 27.0     | 36.2     |
| SOUND LEVEL                  |            |         |          |          |          |          |          |          |          |
| Sound Pressure               | (4)        | dB(A)   | 49       | 49       | 49       | 50       | 50       | 50       | 50       |
| Sound Power Level in Cooling | (5)(7)     | dB(A)   | 81       | 81       | 81       | 82       | 82       | 82       | 82       |
| Sound Power Level in Heating | (6)(8)     | dB(A)   | 81       | 81       | 81       | 82       | 82       | 82       | 82       |
| SIZE AND WEIGHT              |            |         |          |          |          |          |          |          |          |
| Α                            | (9)        | mm      | 2395     | 2395     | 2395     | 2395     | 2395     | 3360     | 3980     |
| В                            | (9)        | mm      | 1195     | 1195     | 1195     | 1195     | 1195     | 1195     | 1195     |
| Н                            | (9)        | mm      | 1865     | 1865     | 1865     | 1865     | 1865     | 1980     | 1980     |
| Operating Weight             | (9)        | kg      | 670      | 680      | 710      | 730      | 770      | 960      | 1130     |

- Notes: 1 Rated In Accordance With AHRI Standard 550/590 (I-P) and 551/591 (S-I)
- 2 Plant cooling exchanger water (out) 6.7°C, with water flow 0.043 l/s per kW;
- Source heat exchanger air (in) 35°C.

- Plant Heating Mode Water (In/Out) 43.3°C/48.9°C;
  Source Heat Exchanger Ambient Air (In) 8.3°C 87% R.H.
  Average Sound Pressure Level At 10m Distance, Unit In A Free Field On A Reflective Surface; Non-Binding Value Calculated From The Sound Power Level.
- 5 Sound power ratings on the basis of measurements made in compliance with ISO 3744.
  6 Sound Power in Compliance with ISO 9614.
  7 Sound Power Level in Cooling, Outdoors.

- 8 Sound Power Level in Heating, Outdoors.
- Standard Unit Configuration, Without Optional Accessories.
   10 Performance rated to Altitude: 0 ft above sea levelaccording to [REGULATION (EU) N. 811/2013]

The units highlighted in this publication contain R410A [GWP<sub>100</sub>2088] fluorinated greenhouse gases.



PR410A



| NX-N-G02-U                   |            |         | 0452P    | 0502P    | 0562P    | 0612P    | 0662P    | 0712P    | 0812P    |
|------------------------------|------------|---------|----------|----------|----------|----------|----------|----------|----------|
| Power supply                 |            | V/ph/Hz | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 |
| PERFORMANCE                  |            |         |          |          |          |          |          |          |          |
| COOLING                      |            |         |          |          |          |          |          |          |          |
| Cooling Capacity             | (1)(2)(10) | kW      | 105.8    | 119.3    | 135.0    | 154.0    | 180.2    | 205.6    | 225.6    |
| Total Power Input            | (1)(2)(10) | kW      | 36.01    | 41.63    | 46.58    | 50.95    | 59.88    | 66.05    | 76.38    |
| COPr                         | (1)(2)(10) | kW/kW   | 2.939    | 2.868    | 2.897    | 3.026    | 3.008    | 3.115    | 2.953    |
| IPLV.SI REFERENCE            | (1)(2)(10) | kW/kW   | 4.740    | 4.710    | 4.690    | 4.690    | 4.680    | 4.700    | 4.700    |
| Rc (ASHRAE)                  |            | kg/kW   | 0.35     | 0.32     | 0.31     | 0.35     | 0.30     | 0.44     | 0.40     |
| HEATING ONLY                 |            |         |          |          |          |          |          |          |          |
| Total Heating Capacity       | (3)        | kW      | 119.6    | 133.6    | 152.2    | 169.1    | 191.6    | 222.1    | 247.6    |
| Total Power Input            | (3)        | kW      | 38.24    | 42.34    | 49.34    | 54.71    | 63.93    | 73.24    | 82.12    |
| COP                          | (3)        | kW/kW   | 3.131    | 3.158    | 3.087    | 3.091    | 2.998    | 3.034    | 3.016    |
| EXCHANGERS                   |            |         |          |          |          |          |          |          |          |
| HEAT EXCHANGER (PLANT)       | N COOLING  | MODE    |          |          |          |          |          |          |          |
| Water Flow                   | (1)(2)     | l/s     | 4.599    | 5.186    | 5.867    | 6.697    | 7.835    | 8.939    | 9.808    |
| Heat Exchanger Pressure Drop | (1)(2)     | kPa     | 27.7     | 27.4     | 39.2     | 31.5     | 43.1     | 47.2     | 48.4     |
| HEAT EXCHANGER (PLANT)       | N HEATING  | MODE    |          |          |          |          |          |          |          |
| Water Flow                   | (3)        | l/s     | 5.163    | 5.764    | 6.570    | 7.296    | 8.269    | 9.587    | 10.69    |
| Heat Exchanger Pressure Drop | (3)        | kPa     | 34.9     | 33.8     | 49.2     | 37.4     | 48.0     | 54.3     | 57.4     |
| REFRIGERANT CIRCUIT          |            |         |          |          |          |          |          |          |          |
| No. Compressors              |            | N°      | 2        | 2        | 2        | 2        | 2        | 2        | 2        |
| No. Circuits                 |            | N°      | 1        | 1        | 1        | 1        | 1        | 1        | 1        |
| Refrigerant Charge           |            | kg      | 37.0     | 38.0     | 42.0     | 53.9     | 54.1     | 89.5     | 91.0     |
| SOUND LEVEL                  |            |         |          |          |          |          |          |          |          |
| Sound Pressure               | (4)        | dB(A)   | 53       | 54       | 56       | 57       | 57       | 57       | 58       |
| Sound Power Level in Cooling | (5)(7)     | dB(A)   | 85       | 86       | 88       | 89       | 89       | 89       | 90       |
| Sound Power Level in Heating | (6)(8)     | dB(A)   | 85       | 86       | 88       | 89       | 89       | 89       | 90       |
| SIZE AND WEIGHT              |            |         |          |          |          |          |          |          |          |
| Α                            | (9)        | mm      | 3980     | 3980     | 4110     | 4110     | 4110     | 5110     | 5110     |
| В                            | (9)        | mm      | 1195     | 1195     | 2220     | 2220     | 2220     | 2220     | 2220     |
| Н                            | (9)        | mm      | 1980     | 1980     | 2150     | 2150     | 2150     | 2150     | 2150     |
| Operating Weight             | (9)        | kg      | 1220     | 1310     | 1900     | 2080     | 2090     | 2500     | 2530     |







### NX-N-G02-U

Heat pump with 2 compressors, air source for outdoor installation, from 11 RT to 64 RT





| NX-N-G02-U                   |            |         | 0152P    | 0182P    | 0202P    | 0252P    | 0262P    | 0302P    | 0402P    |
|------------------------------|------------|---------|----------|----------|----------|----------|----------|----------|----------|
| Power supply                 |            | V/ph/Hz | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 |
| PERFORMANCE                  |            |         |          |          |          |          |          |          |          |
| COOLING                      |            |         |          |          |          |          |          |          |          |
| Cooling Capacity             | (1)(2)(10) | RT      | 11.70    | 12.93    | 15.22    | 17.43    | 19.45    | 21.83    | 26.07    |
| Total Power Input            | (1)(2)(10) | kW      | 14.28    | 15.75    | 18.27    | 20.95    | 23.78    | 26.77    | 30.52    |
| COPr                         | (1)(2)(10) | Btu/hW  | 9.83     | 9.82     | 9.97     | 9.96     | 9.80     | 9.77     | 10.26    |
| IPLV.SI REFERENCE            | (1)(2)(10) | Btu/hW  | 16.17    | 16.04    | 15.97    | 16.00    | 16.17    | 16.38    | 16.04    |
| Rc (ASHRAE)                  |            | lbs/RT  | 2.74     | 2.48     | 2.17     | 1.90     | 1.76     | 2.73     | 3.06     |
| HEATING ONLY                 |            |         |          |          |          |          |          |          |          |
| Total Heating Capacity       | (3)        | kBtu/h  | 166.7    | 183.2    | 207.4    | 241.5    | 261.9    | 306.3    | 362.2    |
| Total Power Input            | (3)        | kW      | 16.59    | 17.37    | 20.22    | 23.74    | 25.43    | 29.14    | 34.78    |
| COP                          | (3)        | Btu/hW  | 10.03    | 10.53    | 10.27    | 10.19    | 10.32    | 10.53    | 10.40    |
| EXCHANGERS                   |            |         |          |          |          |          |          |          |          |
| HEAT EXCHANGER (PLANT)       |            | G MODE  |          |          |          |          |          |          |          |
| Water Flow                   | (1)(2)     | GPM     | 28.36    | 31.33    | 36.89    | 42.23    | 47.13    | 52.91    | 63.18    |
| Heat Exchanger Pressure Drop | (1)(2)     | ft H₂O  | 11.0     | 11.0     | 11.7     | 10.0     | 9.81     | 12.4     | 8.27     |
| HEAT EXCHANGER (PLANT)       | N HEATING  | MODE    |          |          |          |          |          |          |          |
| Water Flow                   | (3)        | GPM     | 33.41    | 36.73    | 41.57    | 48.40    | 52.51    | 61.39    | 72.60    |
| Heat Exchanger Pressure Drop | (3)        | ft H₂O  | 15.3     | 15.2     | 14.9     | 13.1     | 12.2     | 16.7     | 10.9     |
| REFRIGERANT CIRCUIT          |            |         |          |          |          |          |          |          |          |
| No. Compressors              |            | N°      | 2        | 2        | 2        | 2        | 2        | 2        | 2        |
| No. Circuits                 |            | N°      | 1        | 1        | 1        | 1        | 1        | 1        | 1        |
| Refrigerant Charge           |            | lb      | 32.0     | 32.0     | 33.1     | 33.1     | 34.2     | 59.5     | 79.8     |
| SOUND LEVEL                  |            |         |          |          |          |          |          |          |          |
| Sound Pressure               | (4)        | dB(A)   | 49       | 49       | 49       | 50       | 50       | 50       | 50       |
| Sound Power Level in Cooling | (5)(7)     | dB(A)   | 81       | 81       | 81       | 82       | 82       | 82       | 82       |
| Sound Power Level in Heating | (6)(8)     | dB(A)   | 81       | 81       | 81       | 82       | 82       | 82       | 82       |
| SIZE AND WEIGHT              |            |         |          |          |          |          |          |          |          |
| А                            | (9)        | in      | 94.3     | 94.3     | 94.3     | 94.3     | 94.3     | 132.3    | 156.7    |
| В                            | (9)        | in      | 47.0     | 47.0     | 47.0     | 47.0     | 47.0     | 47.0     | 47.0     |
| Н                            | (9)        | in      | 73.4     | 73.4     | 73.4     | 73.4     | 73.4     | 78.0     | 78.0     |
| Operating Weight             | (9)        | lb      | 1,477    | 1,499    | 1,565    | 1,609    | 1,698    | 2,116    | 2,491    |

#### Notes:

1 Rated In Accordance With AHRI Standard 550/590 (I-P) and 551/591 (S-I)

Plant cooling exchanger water (out) 6.7°C, with water flow 0.043 l/s per kW; Source heat exchanger air (in) 35°C.
 Plant Heating Mode Water (In/Out) 43.3°C/48.9°C;

Source Heat Exchanger Ambient Air (In) 8.3°C - 87% R.H.

4 Average Sound Pressure Level At 10m Distance, Unit In A Free Field On A Reflective Surface; Non-Binding Value Calculated From The Sound Power Level.

5 Sound power ratings on the basis of measurements made in compliance with ISO 3744.

6 Sound Power in Compliance with ISO 9614.

Sound Power Level in Cooling, Outdoors.
 Sound Power Level in Heating, Outdoors.
 Standard Unit Configuration, Without Optional Accessories.

10 Performance rated to Altitude: 0 ft above sea levelaccording to [REGULATION (EU) N. 811/2013]

The units highlighted in this publication contain R410A [GWP  $_{\scriptscriptstyle 100}$  2088] fluorinated greenhouse gases.



PR410A



| NX-N-G02-U                   |             |         | 0452P    | 0502P    | 0562P    | 0612P    | 0662P    | 0712P    | 0812P    |
|------------------------------|-------------|---------|----------|----------|----------|----------|----------|----------|----------|
| Power supply                 |             | V/ph/Hz | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 | 575/3/60 |
| PERFORMANCE                  |             |         |          |          |          |          |          |          |          |
| COOLING                      |             |         |          |          |          |          |          |          |          |
| Cooling Capacity             | (1)(2)(10)  | RT      | 30.08    | 33.92    | 38.38    | 43.80    | 51.25    | 58.47    | 64.15    |
| Total Power Input            | (1)(2)(10)  | kW      | 36.01    | 41.63    | 46.58    | 50.95    | 59.88    | 66.05    | 76.38    |
| COPr                         | (1)(2)(10)  | Btu/hW  | 10.03    | 9.78     | 9.88     | 10.32    | 10.26    | 10.63    | 10.08    |
| IPLV.SI REFERENCE            | (1)(2)(10)  | Btu/hW  | 16.17    | 16.07    | 16.00    | 16.00    | 15.97    | 16.04    | 16.04    |
| Rc (ASHRAE)                  |             | lbs/RT  | 2.71     | 2.47     | 2.41     | 2.72     | 2.33     | 3.38     | 3.13     |
| HEATING ONLY                 |             |         |          |          |          |          |          |          |          |
| Total Heating Capacity       | (3)         | kBtu/h  | 408.2    | 455.7    | 519.5    | 576.9    | 653.8    | 758.0    | 845.0    |
| Total Power Input            | (3)         | kW      | 38.24    | 42.34    | 49.34    | 54.71    | 63.93    | 73.24    | 82.12    |
| COP                          | (3)         | Btu/hW  | 10.68    | 10.78    | 10.53    | 10.55    | 10.23    | 10.35    | 10.29    |
| EXCHANGERS                   |             |         |          |          |          |          |          |          |          |
| HEAT EXCHANGER (PLANT) I     | N COOLING   | MODE    |          |          |          |          |          |          |          |
| Water Flow                   | (1)(2)      | GPM     | 72.90    | 82.21    | 93.00    | 106.1    | 124.2    | 141.7    | 155.5    |
| Heat Exchanger Pressure Drop | (1)(2)      | ft H₂O  | 9.26     | 9.17     | 13.1     | 10.5     | 14.4     | 15.8     | 16.2     |
| HEAT EXCHANGER (PLANT) I     | N HEATING I | MODE    |          |          |          |          |          |          |          |
| Water Flow                   | (3)         | GPM     | 81.83    | 91.36    | 104.1    | 115.6    | 131.1    | 152.0    | 169.4    |
| Heat Exchanger Pressure Drop | (3)         | ft H₂O  | 11.7     | 11.3     | 16.5     | 12.5     | 16.1     | 18.2     | 19.2     |
| REFRIGERANT CIRCUIT          |             |         |          |          |          |          |          |          |          |
| No. Compressors              |             | N°      | 2        | 2        | 2        | 2        | 2        | 2        | 2        |
| No. Circuits                 |             | N°      | 1        | 1        | 1        | 1        | 1        | 1        | 1        |
| Refrigerant Charge           |             | lb      | 81.6     | 83.8     | 92.6     | 119      | 119      | 197      | 201      |
| SOUND LEVEL                  |             |         |          |          |          |          |          |          |          |
| Sound Pressure               | (4)         | dB(A)   | 53       | 54       | 56       | 57       | 57       | 57       | 58       |
| Sound Power Level in Cooling | (5)(7)      | dB(A)   | 85       | 86       | 88       | 89       | 89       | 89       | 90       |
| Sound Power Level in Heating | (6)(8)      | dB(A)   | 85       | 86       | 88       | 89       | 89       | 89       | 90       |
| SIZE AND WEIGHT              |             |         |          |          |          |          |          |          |          |
| A                            | (9)         | in      | 156.7    | 156.7    | 161.8    | 161.8    | 161.8    | 201.2    | 201.2    |
| В                            | (9)         | in      | 47.0     | 47.0     | 87.4     | 87.4     | 87.4     | 87.4     | 87.4     |
| Н                            | (9)         | in      | 78.0     | 78.0     | 84.6     | 84.6     | 84.6     | 84.6     | 84.6     |
| Operating Weight             | (9)         | lb      | 2,690    | 2,888    | 4,189    | 4,586    | 4,608    | 5,512    | 5,578    |





# "BY FAR THE BEST PROOF IS EXPERIENCE" Sir Francis Bacon British Philosopher (1561 - 1626)



# GARDESCHÜTZEN OFFICE BUILDING

Berlin - Germany

**Application: Offices** 

Plant type: Hydronic System Cooling capacity: 28 kW Installed machines: 1x medium temperature heat pump



#### **PANORAMA HOTEL**

Prague - Czech Republic

**Period:** 2017 **Application:** Hotel and resorts

Plant type: Hydronic System Cooling capacity: 1669 kW Heating capacity: 515 kW Installed machines: 2x water cooled chiller, 3x NX-N/CA high efficiency heat pump, Manager 3000 control system, Sequencer

### **PHAROS**

Hoofddorp - Netherlands

Period: 2020 Application: Offices

Plant type: Hydronic System Cooling capacity: 1516 kW Heating capacity: 554 kW Installed machines: 2x high efficiency chiller with green refrigerant 1x high efficiency heat pump 

# MORE THAN 1000 PROJECTS ALL OVER THE WORLD

### **HEINEKEN THE BLADE**

Den Bosch - Netherlands

Period: 2019 - 2020 Application: Industrial Process - Offices

Plant type: Hydronic System Cooling capacity: 223 kW Heating capacity: 182 kW Installed machines: 2x scroll compressor heat pumps, 1x scroll compressor chiller

# **GROEVENBEEK SCHOOL**

Ermelo - Netherlands

Period: 2019 Application: Sport structures - School / University

Plant type: Hydronic System Cooling capacity: 41 kW Heating capacity: 46 kW Installed machines: 1x scroll compressor heat pump



Every project is characterised by different needs and system specifications for various climates. All these projects share high energy efficiency, maximum integration, and total reliability resulting from the Climaveneta brand experience.



# **US AIR BASE**

Ramstein - Germany

Period: 2019 Application: Sport structures - School / University

Plant type: Hydronic System Cooling capacity: 41 kW Heating capacity: 46 kW Installed machines: 1x scroll compressor heat pump







Mitsubishi Electric Sales Canada Inc.

4299 14th Avenue, Markham Ontario, L3R 0J2

www.climaveneta.ca



for a greener tomorrow

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

MEM-202013-E © 2020 All Rights Reserved. Mitsubishi Electric Sales Canada Inc. Mitsubishi Electric reserves the right to modify the design of its products, their characteristics and the information contained in this literature. Specifications are subject to change without notice.



